
SSP in a Modelica Environment

Dag Brück

Dassault Systèmes, Lund, Sweden, dag.brueck@3ds.com

Abstract

System Structure and Parameterization (SSP) is a tool

independent standard to define complete systems. Dymola

now supports import and export of SSP files; this paper

describes how the SSP support was implemented and

discusses some of the constraints and unavoidable

compromises.

Keywords: Modelica, SSP, implementation

1 SSP and supporting processes

System Structure and Parameterization (Mai 2019),

known as SSP, is a tool independent standard to define

complete systems. In a typical use of SSP, the system

description consists of several interconnected Functional

Mockup Units (FMUs), nested system descriptions, and

their parameterizations and other related data, as shown in

Figure 1.

Figure 1. Top-level system comprising two FMUs and

a drivetrain subsystem described hierarchically.

SSP is suitable for representing simple model structure

with additional support for parameter sets and (some)

simulation setup. However, SSP was designed to meet

several needs:

 SSP for designing a simulation structure.

Components are described with its inputs and

outputs and its required parameters, but no
behavior.

 SSP as a template for implementation, based on the

interfaces and parameters defined in the previous

step.

 SSP as central parameterization description and

database (Hällqvist et al. 2021). Several data sets

can be defined and documented in a portable

manner.

 SSP as a ready-to simulate system description. This

is the main use we envision in our environment.

 SSP for reuse of system structure during different

phases of development, for example, an SSP

defined originally for software-in-the-loop can also

be reused for hardware-in-the-loop testing.

A key objective is that the SSP files can be transferred

between multiple environments for architecture

specification, detailed design and model implementation,

or post-processing analysis. A demonstrator using such a

multi-tool workflow was developed by ProSTEP ivip

Smart System Engineering (Rude et al. 2021), as shown

in Figure 2. For this application, several tools were used

in a collaborative manner: Dymola (Dassault Systèmes

2019; Elmqvist 2014), easySSP (eXXcellent 2022),

PMSF FMI Bench (Mai 2023) and Tracy (Vettermann

2021).

Figure 2. Traceability workflow using SSP from

ProSTEP ivip Smart System Engineering.

SSP is commonly stored as a zip-file containing several

files and a hierarchy of directories. A simplified view of

the SSP structure is given in Figure 3.

Figure 3. Simplified structure of the SSP file.

SSP is open for any extensions using standardized or

vendor-specific annotations and directories with addi-

tional meta-data. Under the catch-phrase “Credible

Decision Process” (CDP), the SSP community has

expressed great interest in adding standardized meta-data.

The SET Level project has developed a process

framework for integrating simulation into the develop-

ment and validation of system models (Heinkel and

Steinkirchner 2022a; Heinkel and Steinkirchner 2022b).

The process supporting CDP is shown in Figure 4.

Figure 4. SET Level credible decision process.

An extensive Simulation Resource Meta Data (SRMD)

file format was defined to store meta-data for simulation

resources as well as meta-data for models, tools, maps and

scenarios, and simulation tasks (Heinkel et al. 2022c).

Similar approaches are LOTAR (LOTAR International

2023), MIC (IRT SystemX 2020) and MoSSEC

(MoSSEC Project 2021), each shaped by the needs of their

respective communities.

It is worth noting that SSP does not specify any

simulation semantics, although you can argue that one is

implied because much of the definition is based on FMI

and the interconnection structure. However, including

components of other types (e.g. Modelica) is within the

scope of SSP.

SSP is developed as a project in the Modelica

Association (MAP-SSP). The first version of the SSP

standard was published in March 2019 (Mai 2019), and
progress is now made to align SSP 2.0 with the FMI 3.0

specification.

Several tools supporting SSP are now emerging; the

remainder of this paper describes how SSP support was

implemented in Dymola and discusses some of the

constraints and unavoidable compromises. A detailed

comparison with other Modelica tools could not be made

due to Dassault Systèmes policies.

2 Mapping SSP to Modelica

Dymola is a development and simulation environment for

Modelica models, with support for importing Functional

Mockup Units (FMUs) and running simulations. This

means that much of the support needed for SSP “comes

for free”, the remaining task being to map SSP structures

to Modelica models in a sensible way. The mapping is

summarized in Figure 5.

Figure 5. Mapping SSP key elements to Modelica

2.1 Package as container for all artifacts

The first design choice was that everything imported from

an SSP would be collected in a single Modelica package

in order to prevent contamination of the namespace.

The package name is derived from the SSP name, and

certain SSP documentation is stored as package docu-

mentation.

2.2 System Structure Description (SSD)

The top-level system, i.e. the SystemStructure.ssd

file, is converted to a Modelica model, including the

internal component, connector and connection structure.

A restriction at present is that Dymola only supports one

top-level SSD.

Embedded systems in the form of nested SSDs are

also imported as locally defined models, and the

corresponding component is created in the top-level

model.

2.3 Functional Mockup Unit (FMU)

All FMUs embedded in the SSP file are imported into the

enclosing package. This import relies entirely on the

available FMU import capabilities of Dymola to create a

Modelica wrapper model, which means that any

combination of ME and CS, or FMI version is supported.

The FMU import processes the port definitions of the

FMU and creates the corresponding Modelica connectors.

Zip File Folders

FMUs

Connection
structure

Parameters

Dictionary

Other
resources

Tables

Meta-data

For that reason, any connector definitions defined in the

corresponding SSP component are resolutely discarded;

the FMU ports are used instead.

2.4 Parameters and connectors

SSDs can have both parameters and connector definitions.

They are mapped to the closest matching Modelica type.

For example, a connector of type ssc:Real and kind

“input” is represented by the MSL type RealInput.

Units in the SSD are applied to the Modelica model

without any checking until the model is translated in

Dymola.

The Binary type is used as a special case to represent

more complex Modelica types (see below), but in the

general case represent a problem for a Modelica

environment. There is no natural mapping to an

anonymous array of bytes; this is an unsolved problem

that SSP shares with FMI.

2.5 Parameter sets

One of the strong points of SSP is that it combines

simulation models with parameter sets, stored in one or

more SSV-files. There are also optional mapping files

(SSM) that allows parameters to mapped to model

variables with different names, and in that process

perform linear transformations for e.g. unit conversion.

In Dymola, we apply a common Modelica idiom to

parameter sets. For each parameter set, we create a new

model that extends from the main model defined in the

SSP, and then we provide the parameters as a modifiers in

the extends-clause. This process allows us to keep the

natural structure of the SSP file in a manner that maps

naturally to Modelica. It also allows further parameter

changes by inheritance.

2.6 Documentation and meta-data

The question of simulation quality, from measurement

data via modeling assumption to simulation setup, has

received considerable attention. As a result, the Credible

Simulation Process (Heinkel and Steinkirchner 2022a) is

applied to SSP. A key aspect of CSP is the ability to store

meta-data in the form of key-value pairs, following

standardized templates defined by organizations or

corporations.

Dymola extracts meta-data stored in the proposed

Simulation Resource Meta Data (SRMD) format and

converts it to model annotations that are displayed and

edited as part of the documentation.

2.7 Simulation setup

SSP does not have any simulation semantics in itself,

although possibly something can be derived from the

underlying reliance on FMU components. The simulation

setup in SSP is conversely restricted to simulation start

and stop times.

Dymola has the capability to store a more extensive

“experiment” annotation in Modelica models, and that

information is shared in SSPs by the use of a proprietary

SSP annotation (lacking further standardization).

3 Example of an imported SSP

Using a simple SSP example, the XML code with many

details omitted is shown in Listing 1.

<?xml version="1.0" encoding="UTF-8"?>

<ssd:SystemStructureDescription >

 <ssd:System name="Example">

 <ssd:Connectors>

 <ssd:Connector name="pos"

 kind="output" />

 </ssd:Connectors>

 <ssd:Elements>

 <ssd:Component name="stimulus"

 type=

 "application/x-fmu-sharedlibrary"

 source=

 "resources/StimulusFMU.fmu">

 <ssd:Connectors>

 <ssd:Connector name="y"

 kind="output">

 <ssc:Real/>

 <ssd:ConnectorGeometry ... />

 </ssd:Connector>

 </ssd:Connectors>

 <ssd:ElementGeometry ... />

 </ssd:Component>

 <ssd:Component name="controller" .. />

 <ssd:Component name="drivetrain" .. />

 </ssd:Elements>

 <ssd:Connections>

 <ssd:Connection

 endElement="controller"

 endConnector="ref"

 startConnector="y"

 startElement="stimulus">

 <ssd:ConnectionGeometry ... />

 </ssd:Connection>

 <ssd:Connection ... />

 <ssd:Connection ... />

 <ssd:Connection ... />

 </ssd:Connections>

 <ssd:SystemGeometry ... />

 </ssd:System>

 <ssd:DefaultExperiment stopTime="4" />

</ssd:SystemStructureDescription>

Listing 1. Simple SSP example.

The representation of parameters in SSP is currently

subject to discussion; see also (Brück 2023).

Importing the SSP file with three FMUs, the gene-

rated Modelica model is displayed as Figure 6.

Figure 6. Diagram of SSP file imported into Dymola.

The generated Modelica code, with graphical annotations

removed for clarity is shown in Listing 2.

model Example "Model for position servo"

 // Connectors

 Modelica.Blocks.Interfaces.RealOutput

 pos annotation (...);

 // Components

 parameter Real k(value=200)

 "Gain of controller";

 parameter Modelica.Units.SI.Time

 T(value=10)

 "Time constant of controller (T>0)";

 parameter Modelica.Units.SI.Radius

 r(value=0.5) "Radius of load";

 parameter Modelica.Units.SI.Mass

 m(value=80) "Mass of load";

 StimulusFMU_fmu stimulus

 annotation (...);

 ControllerFMU_fmu controller

 annotation (...);

 DrivetrainFMU_fmu drivetrain

 annotation (...);

equation

 // Connections

 connect(stimulus.y, controller.ref)

 annotation (...);

 connect(controller.y, drivetrain.u)

 annotation (...);

 connect(drivetrain.pos, controller.pos)

 annotation (...);

 connect(drivetrain.pos, pos)

 annotation (...);

 annotation (experiment(StopTime=4));

end Example;

Listing 2. Generated Modelica code after import.

If the SSP file contains parameter sets (SSV and

optionally SSM files), then additional Modelica models

are created that provide parameter settings, see Listing 3.

model HighGain "Servo with high gain"

 extends Example(k=400, T=12);

end HighGain;

Listing 3. Applied parameter set.

It is worth noting that Dymola creates a Modelica wrapper

model for each imported FMU. These models are however

no different for FMUs in SSP-files from other imported

FMUs.

4 Mapping Modelica to SSP

Being a modeling and simulation environment for

Modelica, Dymola has to support model export to SSP.

4.1 Models with FMUs

The most straightforward use case is a top-level Modelica

model populated with interconnected FMUs as

components. This kind of structure can be exported to a

standard SSP file under the assumption that you only use

types that can be expressed in SSP. For example,

Modelica.Blocks.Interfaces.RealInput and RealOutput

can be mapped to ssc:Real with kind=”input” and

“output” respectively. FMUs are copied from wherever

they are located into the SSP file’s resource directory.

Similarly, local variables and parameters of built-in

types, connections and description string have

corresponding attributes in SSP. More advanced concepts

such as inheritance (extends) and model templates

(replaceable/redeclare) cannot be represented.

4.2 Need for annotations

SSP has a general escape mechanism called “annotations”

that allows a tool to store arbitrary information with a

proprietary encoding. Each annotation is tagged by the

tools, e.g. com.3ds.dymola.

Dymola uses such annotations to store model

documentation, the full experiment (simulation) setup,

commands and standardized Modelica figure annotations.

It is worth noting that the only simulation setup attributes

defined in SSP are start and stop times.

Dymola can store model meta-data (key-value pairs,

in user-defined groups). Most meta-data are stored in SSP

annotations, the exception being meta-data groups being

identified as being in SRMD format. Such SRMD meta-

data is stored in separate SRMD files in the SSP extra

directory.

Graphical annotations in Modelica models are not

stored in SSP. The possibility to store the entire model text

as an annotation is not used by Dymola.

4.3 Native Modelica models

A natural extension (in a Modelica tool) is the possibility

to use Modelica components in addition to FMUs and

export it as an SSP file. Such an extension would increase

the expressive power of SSP, for example by connecting

physical connectors such as mechanical flanges or fluid

pipes.

SSP was designed with such openness in mind,

although the specification only mentions FMI by name

and provides a restricted set of types appropriated from

FMI. A noteworthy point is that SSP does not define any

simulation semantics, this follows implicitly from the

semantic meaning of connecting its components.

Dymola supports an extended SSP format that has

been proposed as part of SSP 2.0 (Brück 2023). The

proposal aims to be a practical compromise with the

following key properties:

 Components and connectors can have native

Modelica types, such as a rotational inertia. We

have chosen to represent them with SSP’s Binary

type as a generalization of the concept.

 Acausal connectors have been added (in addition

to in, out and inout).

 Parameter values can be arbitrary expressions.

 Modelica components use references to Modelica

types; the Modelica models themselves are not

stored in the SSP file.

It is hoped that the community can gain experience of

using Modelica components in SSP and that it eventually

lead to adaption by SSP.

4.4 Round tripping

In this context, round tripping means the ability to read

and write between internal and external data formats

without any loss of information. A stricter sense of the

term would require an identical external representation.

Dymola is only partially successful in this respect.

Overall structure and simulation behavior is very well

preserved, which can be expected as FMUs are copied in

and out.

The read-edit-store cycle for SSPs is not so well

developed and will need improvement in the future. In

particular, annotations from other tools may be lost during

editing.

5 Conclusions

Reasonable, although not complete, support for SSP has

been implemented in Dymola. It takes advantage of earlier

functionality for e.g. importing FMUs, hence is able to

map most SSP concepts to Modelica models.

The development effort is entirely guided by

practicality, with the aim of providing high-quality

simulation capabilities to SSP. The degree of success has

to be judged by its users.

Acknowledgements

The author wants to thank the members of the SSP design

group, in particular Pierre Mai and Peter Lobner, for

constructive collaboration.

References

Brück, Dag (2023). "Modelica Models in SSP" in Proc. 15th

International Modelica Conference, Aachen, Germany.

Dassault Systèmes (2019). "What is Dymola?",

https://www.3ds.com/fileadmin/PRODUCTS/CATIA/DY

MOLA/PDF/What-is-Dymola-2020x.pdf.

Elmqvist, Hilding (2014). "Modelica Evolution - From My

Perspective" in Proc. 10th Modelica Conference, Lund,

Sweden.

eXXcellent (2022). "orchideo | easySSP", https://www.easy-

ssp.com/.

Heinkel, Hans-Martin, P. R. Mai, R. Aue, J. Bou, C. Bühler, C.

Franke and A. Puetz (2022). "SRMD format

and classifications for metadata". https://gitlab.setlevel.de/

open/processes_and_traceability/traceability_data/-/blob/m

ain/SETLevel_SRMD_and_classifications_for_metadata.p

df.

Heinkel, Hans-Martin and K. Steinkirchner (2022a).

"Credible Simulation Process". https://gitlab.setlevel.de/

open/processes_and_traceability/credible_simulation_proce

ss_framework/-/blob/main/Credible-Simulation-Process-

v1-2.pdf.

Heinkel, Hans-Martin and K. Steinkirchner (2022b).

"Credible Modeling Process", https://gitlab.setlevel.de/-

open/processes_and_traceability/credible_simulation_proce

ss_framework/-/blob/main/Credible-Modeling-Process-v1-

0.pdf.

Heinkel, Hans-Martin, P. R. Mai, R. Aue, J. Bou, C. Bühler, C.

Franke and A. Puetz (2022c). "SRMD format and

classifications for metadata", https://gitlab.setlevel.de/

open/processes_and_traceability/traceability_data/-

/blob/main/SETLevel_SRMD_and_classifications_for_met

adata.pdf.

Hällqvist, Robert, R. C. Munjulury, R. Braun, M. Eek and P.

Krus (2021). "Engineering Domain Interoperability Using

the System Structure and Parameterization (SSP) Standard"

in Proc. of the 14th International Modelica Conference,

Linköping, Sweden.

IRT SystemX (2020). "Model Identity Card (MIC)",

https://mic.irt-systemx.fr/mic.

LOTAR International (2023). "LOTAR - Long Term Archiving

and Retrieval", https://lotar-international.org/.

Mai, Pierre R. et al. (2019). "System Structure and

Parameterization". https://ssp-standard.org/publications/

SSP10/SystemStructureAndParameterization10.pdf.

Mai, Pierre R. (2023). "PMSF FMI Bench",

https://pmsf.eu/products/fmibench/.

MoSSEC Project (2021). "Modelling and Simulation

information in a collaborative Systems Engineering

Context," ISO 10303-243:2021, http://www.mossec.org/.

Rude, Stefan, F. Fischer, H. Esen, P. R. Mai, K. Steinkirchner,

P. Lobner, D. Brück and H.-M. Heinkel (2021). "prostep ivip

SmartSE: Traceable simulation results in a heterogeneous

environment", https://youtu.be/qVXD0sZG5f8.

 Vettermann, Steven, C. Bühler and K. Steinkirchner (2021).

"Traceability Software Demonstrator TRACY," 29 April

2021, https://setlevel.de/assets/mid-term-presentation/

Traceability.pdf.

	Abstract
	1 SSP and supporting processes
	2 Mapping SSP to Modelica
	2.1 Package as container for all artifacts
	2.2 System Structure Description (SSD)
	2.3 Functional Mockup Unit (FMU)
	2.4 Parameters and connectors
	2.5 Parameter sets
	2.6 Documentation and meta-data
	2.7 Simulation setup

	3 Example of an imported SSP
	4 Mapping Modelica to SSP
	4.1 Models with FMUs
	4.2 Need for annotations
	4.3 Native Modelica models
	4.4 Round tripping

	5 Conclusions
	Acknowledgements
	References

