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1 Introduction

Understanding economic development, land rights and management, and structural transformation requires accurate and
granular measurements of poverty and growth. Fine-grained estimates of living standards are also critical to effectively tar-
get policies and evaluate development interventions (Smythe and Blumenstock, 2022; Elbers et al., 2007). However, most
low-income countries lack the resources and administrative capacity to regularly collect household-level socioeconomic in-
formation (cf. Jerven, 2013).

In the past decade, there has been considerable innovation in methods for constructing estimates of living standards
from non-traditional sources of data. Satellite-based poverty estimates have been produced at the village level (Jean et al.,
2016; Yeh et al., 2020; Engstrom et al., 2017), the neighborhood level (Smythe and Blumenstock, 2022) and the satellite tile
level (e.g., tiles that are 1-2 square kilometres in area (Chi et al., 2022; Rolf et al., 2021).) In general, these studies find that
machine learning and satellite data can explain a substantial amount of the in survey-based ground-truthmeasures of wealth
and poverty (e.g., 70% explained variation in an asset index at the village level in Sub-Saharan Africa (Yeh et al., 2020) and
60% explained variation in poverty rates at the village level in Sri Lanka (Engstrom et al., 2017)).

While these methods have been successful at estimating the wealth and poverty of relatively large geographic units that
contain over large numbers of households, a great deal of variation in living standards is lost when households are aggregated
to larger geographic units. As an example, Figure 1a highlights a 1-square kilometer region in Bangladesh, and indicates with
dots the locations of 41 households that were surveyed. We observe that, even within this one small geographic area, there is
considerable variation in living standards (as measured by the Progress Out of Poverty, or PPI, score); indeed the distribution
of PPI scores within this 1km2 tile has roughly the same variance as the distribution for the entire region covered by the
survey (Figure 1b).

In this study, we explore the extent to which machine learning and high-resolution satellite imagery can be used to
accurately estimate the living standards of individual households. Using ground truth data froma large survey inBangladesh,
we comparemethods that rely on“black-box”deep learning algorithms, tomore interpretable algorithms that extract specific
characteristics from satellite imagery as a precursor to supervised learning.
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(a) geographic locations of survey responses within a given
satellite tile, or “scene”, colored by PPI score
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(b) distribution of PPI scores for the entire survey, with colored dots from
the left panel overlaid on the vertical axis and scene-average PPI marked
by a dashed line

Figure 1: Average tile size versus distribution of PPI scores in Bangladesh. The left panel maps survey response coordinates, colored
by progress out of poverty (PPI) score, for a single village and the size of the corresponding 1 square kilometer tile (black box). The right
panel shows the distribution of the entire dataset’s PPI scores, with colored values from the left panel overlaid on the vertical axis. While
state-of-the-art in poverty mapping can accurately predict the scene-average PPI at the 1-2 square kilometer imagery scale, household-
level predictions require predicting outcome variables that span almost the entire dataset’s range, a more challenging task.

1.1 RelatedWork

Two previous studies have estimated household-level poverty from satellite imagery, demonstrating the feasibility of the
overall approach. However, these studies’ generalizability is limited by a number of factors. Both studies suffer from small
sample sizes (N = 231 households in Kenya (Watmough et al., 2019) andN = 238 households in China (Han et al., 2021)),
focus onvery small geographies (within a single village or city), donot explore deep learning approaches topovertyprediction
(which have provenmost accurate in past work), and only evaluate predictive accuracy for a singlemeasure of poverty (asset-
based wealth, rather than a suite of measures). They also do not evaluate the real-world utility of household-level satellite-
based poverty estimates, such as humanitarian aid targeting or tax administration (Knebelmann et al., 2023).

Most work in the literature on satellite-based poverty prediction, independent of the scale at which poverty estimates
are produced, takes one of two approaches: either an explicit featurization approach or a deep learning-based approach.
In the explicit featurization approach, researchers define a set of meaningful features from satellite images at the outset,
(such as: the number of houses in a community, local road network density, forest cover extent, and average rooftop size).
These features are paired with ground-truth village-level socioeconomic data (typically from national surveys such as the
Demographic andHealth Surveys or Living StandardsMeasurement Surveys, which conduct households surveys in a small
subset of communities in a country). This matched dataset comprise the labels and predictors used to train anMLmodel to
predict socioeconomic status from the satellite-based features (Hersh et al., 2021; Engstrom et al., 2017). In the deep learning
approach to satellite-based poverty prediction, introduced by Jean et al. (2016), artificial neural networks initially trained for
generic image recognition tasks are “fine-tuned”, or further trained, to predict poverty from satellite bands without human
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intervention in explicitly defining salient image characteristics at the outset. Such models are typically more accurate than
the explicit featurization approach (Jean et al., 2016), but they lack the ability to identify which image attributes are most
salient to poverty prediction. Recent papers have generalized the deep learning poverty prediction pipeline, producing
and evaluating satellite-based poverty estimates in all of Sub-Saharan Africa (Yeh et al., 2020), all low and middle-income
countries (Chi et al., 2022), and globally (CIESIN, 2022). In both approaches, the trained model is then used to predict
poverty in all areas of a country, including the large number of areas not surveyed. We test both interpretable explicit feature
extraction from images and the deep learning approach to predict poverty from satellite images.

2 Data&Methods

2.1 Data Sources

The relevant datasets to enable household-level poverty prediction from satellite imagery are: a) ground truth, geo-located
poverty labels from survey data; b) polygon definitions of building footprints; and c) high-resolution satellite imagery of the
relevant prediction area.

For this project’s ground truth poverty measure, we use the results of a large geolocated field survey (N ≈ 100,000)
conducted in the Cox’s Bazar District of southeastern Bangladesh by GiveDirectly. The survey asked respondents demo-
graphic questions (number of children in the household; size of household; age, gender identity, and years of education
of the household head), asset ownership questions (whether the household owned a bicyle, refrigerator, fan, and mobile
phones), and dwelling quality questions (number of walls and access to sanitation). From these survey responses, a Progress
Out of Poverty Index (PPI)1 score was calculated, and this score is used as the target variable in this prediction exercise.

To link the survey responses to buildings, wematchGPS locations in the surveywith building polygons from theOpen-
Buildings dataset (Sirko et al., 2021). The GPS coordinates for survey responses were considered to match to a building
polygon if the reported coordinate fell within a building polygon (point-in-polygon), if a building footprint fell within a
radius of the reported GPS coordinate corresponding to the GPS device’s reported accuracy, or if a single GPS coordinate
fell within the bounds of the highest-resolution satellite imagery tile for a single building (see Figure 2 for examples of each
match type). We were able tomatch 11,243 households to buildings using the point-in-polygon approach, 11,504 households
using the GPS buffer approach, and 4,817 households using the tile bounds-based approach, for a total dataset size of 27,564
household-building matches.

For satellite imagery, we used the Google Static Maps application programming interface (API) to download satellite
imagery centered at each matched building polygon’s centroid. We procured satellite imagery at the three most granular
zoom levels offered by the service: z = 19 (roughly the scale of a neighborhood), z = 20 (capturing the area around a house),
z = 21 (corresponding to a given house), as seen in Figure 3.

2.2 Machine LearningMethods

The resulting dataset (PPI score matched to building footprint polygons and satellite imagery tiles) was then featurized in
twoways to create predictive variables for amachine learning predictor: with a set of explicit features known from the litera-
ture to be predictive of socioeconomic outcomes, andwith a set of artificial neural networks that extracted high-dimensional
vector representations of images suitable for classification. Table 1 lists the manually-curated features with a description of

1Unlike the similarly-named probability of poverty index, the progress out of poverty index is positively correlated with wealth.
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(a) Point-in-polygon match: reported GPS
coordinate falls within a building foot-
print.

(b) GPS buffer match: buffering the re-
ported GPS component by the recorded
GPS uncertainty creates a polygon which
uniquely intersects a building footprint.

(c) Scene match: the reported GPS coor-
dinate and building footprint are the only
geometries in the bounding box of the
highest-resolution satellite tile.

Figure 2: Types of match conditions to assign survey responses to physical structures. The white dots represent the survey
response’s reportedGPScoordinate, and thewhite dotted line is theboundary of a circle centered at theGPScoordinatewith
radius equal to the GPS recording’s uncertainty. The red polygons are building footprints as reported by OpenBuildings,
with building centroids represented by red dots.

(a) z = 19 (b) z = 20 (c) z = 21

Figure 3: Example images from the Google Static Maps API at the three zoom levels used, each centered at the same coordi-
nates of a house in the sample.
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their implementation. The featurization architectures investigated in this work are the ResNet (He et al., 2016) and Con-
vNeXt (Liu et al., 2022) networks.

Proxy measure feature name description

Crowdedness

building_area building footprint size (MB)
building_area_wavg building footprint size (SWA)
num_buildings_in_scene total count of buildings in scene
min_NN_dist minimum distance to nearest neighboring building (MB)
min_NN_dist_wavg minimum distance to nearest neighboring building (SWA)
aver_4NN_dist average distance to nearest four neighboring buildings (MB)
aver_4NN_dist_wavg average distance to nearest four neighboring buildings (SWA)

Dwelling characteristics

R_band spectral band: Red (MB)
G_band spectral band: Green (MB)
B_band spectral band: Blue (MB)
RGB RGB 16-bit composite (MB)
R_band_wavg spectral band: Red (SWA)
G_band_wavg spectral band: Green (SWA)
B_band_wavg spectral band: Blue (SWA)
RGB_wavg RGB 16-bit composite (SWA)

Urban planning angle_to_road footprint orientation with respect to nearest road (MB)
angle_to_road_wavg footprint orientation with respect to nearest road (SWA)

Road network distance_to_road proximity to nearest road (MB)
distance_to_road_wavg proximity to nearest road (SWA)

Other controls distance_to_point distance of scene building centroids to matched survey GPS coordinate
inv_d_weight inverse distance weight (centroid to matched point)

MB: Matched building; SWA: Scene weighted average. It refers to if the corresponding feature refers to the matched building
in the scene, or is an inverse distance weighted average of the values of all the buildings in the scene. The weighting distance
corresponds to the one from each building centroid to the GPS coordinate from the survey

Table 1: List of domain expert-curated features used in the explicit featurization approach.

After feature extraction, each set of features is run through principal component analysis to identify the most salient
5,000 feature dimensions, and then passed into a gradient boosting machine to predict household PPI scores. The total
dataset was split into a training set (70% of dataset;Ntrain = 19,295), validation set (15% of the dataset;Nvalidation = 4,134), and
holdout set (the remaining 15% of the dataset;Ntest = 4,134). The training set was used to identify patterns, while predictor
hyperparameters were tuned by evaluation on the validation set. Final performance was reported by evaluation of mean-
squared-error andR2 on the test set. The hyperparameters for the gradient boostingmachine searched overwere the number
of ensemble estimators, the learning rate, and the maximum tree depth of the underlying decision trees.

3 Preliminary Results

We present the prediction performance of gradient boosted machines on features from both the explicit featurization ap-
proach and deep learning approaches in Table 2. With the caveat that this work is still in its early stages, we find comparable
explanatory performance of the two approaches, especially comparing prediction performance on the manual features to
that of ConvNeXt-featurized images. However, we expect the smaller explicitly-curated feature space to have limited gen-
eralizability in other settings, with less homogenous label distributions, as we explain in our discussion section.
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feature set performance optimal hyperparameters
R2 MSE # estimators learning rate maximum tree depth

explicit featurization 0.1199 121.09 100 0.1 3

ConvNeXt-featurized 0.1182 121.34 5000 0.01 none

ResNet18-featurized 0.0188 135.01 1000 0.01 1

Table 2: Performance of gradient boosting machine predictions on different feature sets, with corresponding hyperparam-
eter choices.
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Figure 4: Relative importance in prediction of each manually-curated feature. Importance is measured by normalizing the
information gain of each feature column by the total information gain across all estimators. Higher relative importance
indicates more explanatory power.

For the explicit featurization, we also report the relative importance in explanatory power of each feature in Figure 4.
Perhaps surprisingly, the inverse distance weighting, initially included as an intermediate calculation for other features, is
the most predictive feature. We interpret the utility of this feature as reflecting a local building clustering density, thereby
picking up the spatial distribution of the household’s surrounding buildings. Other potential “neighborhood effects” are
picked up by the weighted average of the area of the buildings in the vicinity of the household. The distance from the
building centroid to the GPS survey response coordinate is also an important predictive feature, indicating the quality of
GPS connection may be correlated with socioeconomic outcomes.

The top 5 most predictive features are, interestingly, derived entirely from vector geometry calculations as opposed to
data derived from satellite imagery. The most predictive satellite imagery feature that was manually extracted is the con-
centration of green pixels in the image, which likely corresponds to the amount of agricultural land seen in a given satellite
image tile.
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4 Discussion& FutureWork

This work represents the first systematic evaluation of whether household-level socioeconomic status for entire regions can
be estimated fromhigh-resolution satellite imagery. Leveraging recent, large-scale ground-truth surveydata fromBangladesh,
we evaluate how accurately measures of vulnerability can be estimated from satellite imagery at the household level.

Such granular estimates of poverty and vulnerability from satellite imagery facilitate development research and pro-
gramming in contexts with low administrative capacity or limited budgets for survey-based data collection. These estimates
may be useful in a number of downstream measurement tasks, such as estimating interim subnational poverty statistics,
household-level targeting of humanitarian aid, determination of land value and tenurial rights, and the monitoring and
evaluation of aid program efficacy.

There are three main directions in which we plan to expand this work in the future: (i) improving and refining the anal-
ysis pipeline; (ii) expanding our analysis to additional geographies; and (iii) policy simulations to explore potential use cases
of household-level poverty estimates. To the first point, there aremanymargins onwhichwe are activelyworking to improve
the core results. These include the construction of additional manually curated features (e.g., distance to agricultural land,
proximity to roads, shadow-based proxies for building height, and the number and areal density of buildings); the use of
othermachine learning architectures, such as vision transformers (Dosovitskiy et al., 2020) to automatically extract features;
and additional fine-tuning of the deep learningmodels. To expand geographically, we have immediate plans to replicate our
analysis from Bangladesh using nationally representative household survey data from Togo. In addition to geographic and
cultural distinctions, the Togo survey data contain consumption and expenditures, and are representative of the entire na-
tion (as opposed to a single district in Bangladesh), including urban and peri-urban regions. Finally, andmore speculatively,
we are interested in benchmarking one or two specific policy applications – such as the targeting of social assistance – to
better understand the extent to which household-level poverty estimates can improve program effectiveness and efficiency.

More broadly, we hope this project can contribute to the literature on satellite-based poverty measurement in two key
ways:

1. Create and evaluate novel methods for estimating household-level standards of living from satellite imagery at na-
tional scale. These methods rely on advances in the resolution of commercially-available satellite imagery to below
1 square meter per pixel, as well as novel deep learning architectures (such as transformers (Vaswani et al., 2017)) for
identifying spatial characteristics of human settlements from imagery - leading to better building footprint identi-
fication and improved ability to make inferences about characteristics of the built environment (e.g. land use, road
network completeness, nighttime luminosity).

2. Provide guidance to policymakers about the strengths and weaknesses of household-level poverty estimation tech-
niques. This guidance covers which metrics (e.g. wealth vs. vulnerability vs. food security) can be reliably measured
from satellite imagery, and at which scales (household, block, neighborhood) estimation is feasible, given data avail-
ability. We also provide guidance on expert-curated feature extraction versus fine-tuned deep learning models in
poverty prediction. Critically, we expect the latter approach to provide more accurate estimates, but stakeholders
often require more interpretable models compatible with the former approach. Our systematic comparison outlines
the cost-benefit tradeoffs that users of these approaches face. We simulate anti-poverty program targeting from these
household-level poverty estimates in Togo and Bangladesh, and compare these estimates to traditional poverty target-
ing approaches (e.g. proxy-means testing, community-based targeting).
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