ESTIMATING HOUSEHOLD-LEVEL ECONOMIC CHARACTERISTICS FROM HIGH-RESOLUTION SATELLITE IMAGERY

World Bank Land Conference - Research Track	14 May, 2024	Washington, DC
Satej Soman 1		
M LEAR AND	D School o	f Information, UC Berkeley
Susana Constenla-Villoslada 1		
Emily Aiken	Goldman School o	f Public Policy, UC Berkeley
	Gournan Scisor of	f i nom i oney, o o berkeley
Joshua E. Blumenstock 1 2	LY DECEMPTING	

OUTLINE

- MOTIVATION
- DATA REQUIREMENTS & DATA SOURCES
- METHODS
- RESULTS
- FUTURE WORK

caveat:

WIP

fine-grained estimates of poverty and vulnerability are important for:

- understanding economic growth and structural transformation
- tax base administration
- land and tenure management
- distribution of social protection

fine-grained estimates of poverty and vulnerability are important for:

- understanding economic growth and structural transformation
- tax base administration
- land and tenure management
- distribution of social protection (this work's focus)

in previous work, there is a tradeoff between scale and granularity

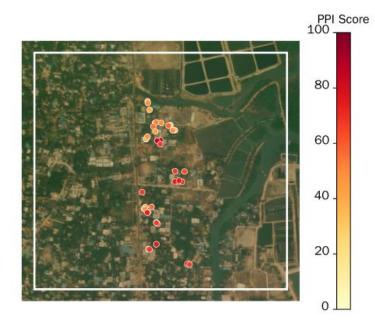
national-scale estimates at:

- the village level (Jean et al., 2016; Yeh et al., 2020; Engstrom et al., 2017)
- the neighborhood level (Smythe and Blumenstock, 2022)
- satellite tile level (e.g., tiles that are 1-2 square kilometres in area) (Chi et al., 2022; Rolf et al., 2021)

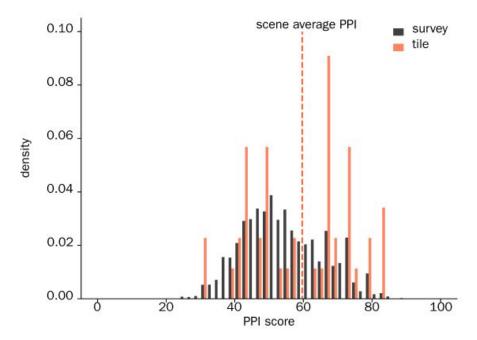
household-level estimation:

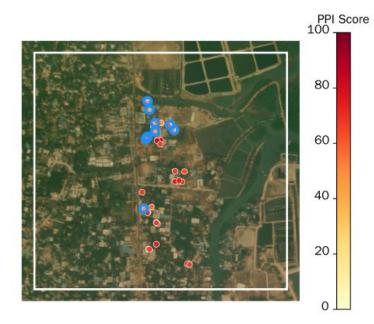
- single village in Kenya; N = 231 (Watmough et al., 2019)
- single city in China; N = 238 (Han et al., 2021)

No approaches using deep learning at this resolution.



density of PPI values, entire survey versus tile





0.08 -0.06 -0.04 -0.02 -0.00 - 20 40 60 80 100

scene average PPI

survey

tile

density of PPI values, entire survey versus tile

0.10

density

goal:

compare expert-curated features with deep learning in predicting household level poverty

THIS WORK OTHER OPTIONS

satellite imagery -

Google Static Maps

Maxar, DigitalGlobe, SkySat

DATA: SATELLITE IMAGERY SCALES

 $z = 21 \qquad \qquad z = 20 \qquad \qquad z = 19$

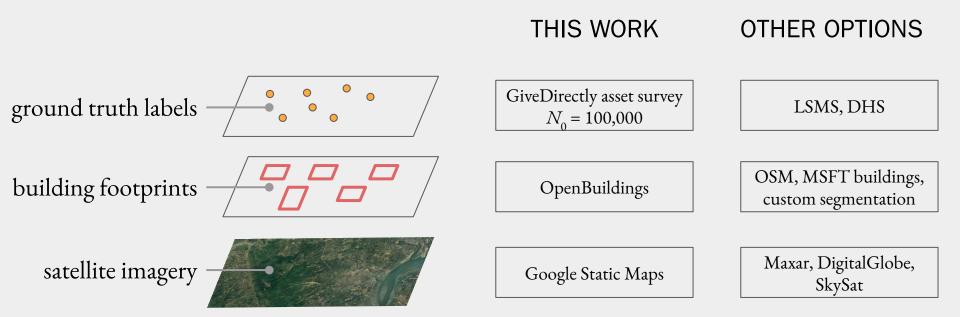
THIS WORK OTHER OPTIONS

satellite imagery -

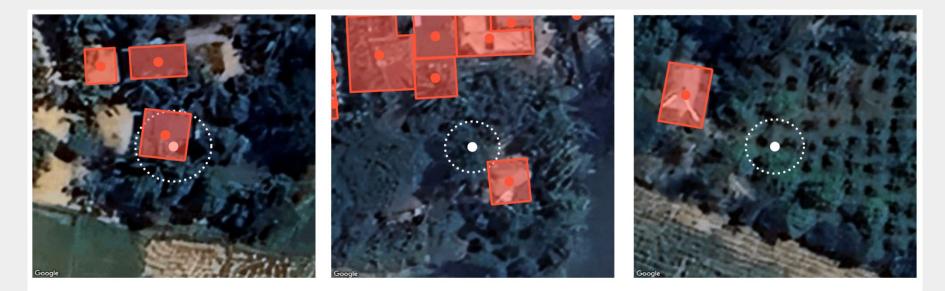
Google Static Maps

Maxar, DigitalGlobe, SkySat

THIS WORK OTHER OPTIONS



DATA: LINKING SURVEYS TO BUILDINGS

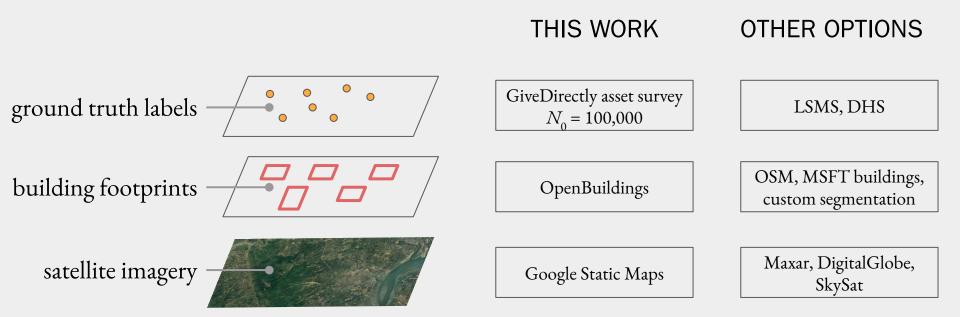


point-in-polygon

GPS buffer intersection

scene heuristic

Matched dataset: N = 20,000



METHODS: FEATURIZATION

Manually-curated features:

- 1. building footprint size
- 2. total count of buildings in scene
- 3. minimum distance to nearest neighboring building
- 4. average distance to nearest 4 neighboring buildings
- 5. spectral band: Red
- 6. spectral band: Green
- 7. spectral band: Blue
- 8. RGB 16-bit composite

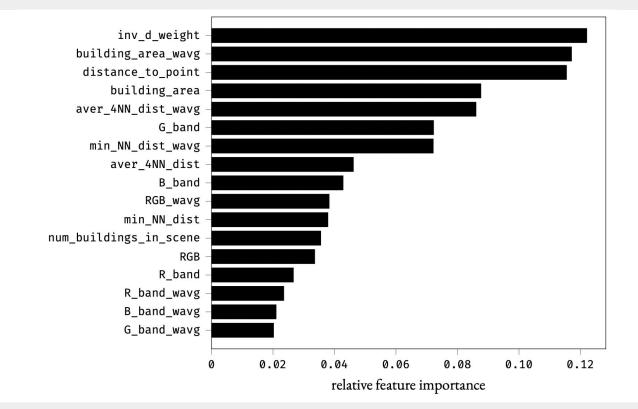
Deep-learning based approach:

- Artificial neural network image classification models trained on ImageNet fed satellite images as input
- Intermediate representations of classifier used as features
- No manual curation

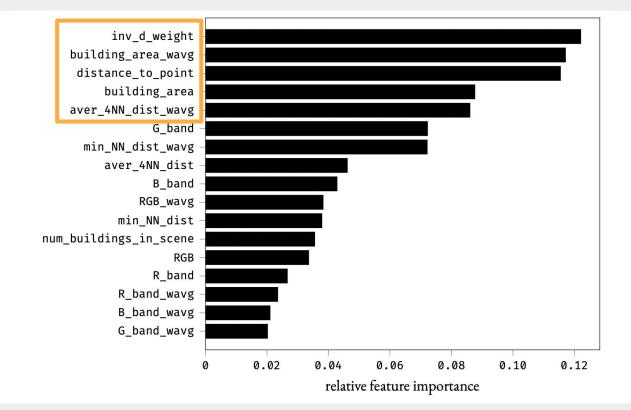
RESULTS: AGGREGATE PERFORMANCE

feature set	performance		optimal hyperparameters		
	<i>R</i> ²	MSE	# estimators	learning rate	maximum tree depth
explicit featurization	0.1199	121.09	100	0.1	3
ConvNeXt-featurized	0.1182	121.34	5000	0.01	none
ResNet18-featurized	0.0188	135.01	1000	0.01	1

RESULTS: FEATURE IMPORTANCE



RESULTS: FEATURE IMPORTANCE



FUTURE WORK

- Higher-resolution satellite imagery
- More manual features
- Further refinement of deep-learning (fine-tuning, apply regression heads)
- Apply techniques to similar datasets in Togo

thank you!

contact: satej@berkeley.edu

