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caveat: 

WIP
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fine-grained estimates of poverty and vulnerability are important for:

● understanding economic growth and structural transformation

● tax base administration

● land and tenure management

● distribution of social protection (this work’s focus)



MOTIVATION
in previous work, there is a tradeoff between scale and granularity

national-scale estimates at:

● the village level (Jean et al., 2016; Yeh et al., 
2020; Engstrom et al., 2017)

● the neighborhood level (Smythe and 
Blumenstock, 2022)

● satellite tile level (e.g., tiles that are 1-2 
square kilometres in area) (Chi et al., 2022; 
Rolf et al., 2021)

household-level estimation: 

● single village in Kenya; N = 231 
(Watmough et al., 2019)

● single city in China; N = 238 (Han et al., 
2021)

No approaches using deep learning at this 
resolution.
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goal: 

compare expert-curated features 
with deep learning in predicting 

household level poverty



DATA: REQUIREMENTS & FUSION

THIS WORK OTHER OPTIONS

satellite imagery Google Static Maps Maxar, DigitalGlobe, 
SkySat
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DATA: LINKING SURVEYS TO BUILDINGS

point-in-polygon GPS buffer intersection scene heuristic

Matched dataset: N = 20,000
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METHODS: FEATURIZATION

Manually-curated features:

1. building footprint size
2. total count of buildings in scene
3. minimum distance to nearest 

neighboring building
4. average distance to nearest 4 

neighboring buildings
5. spectral band: Red
6. spectral band: Green
7. spectral band: Blue
8. RGB 16-bit composite

Deep-learning based approach:

● Artificial neural network image 
classification models trained on 
ImageNet fed satellite images as input

● Intermediate representations of 
classifier used as features

● No manual curation



RESULTS: AGGREGATE PERFORMANCE
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FUTURE WORK

● Higher-resolution satellite imagery

● More manual features

● Further refinement of deep-learning (fine-tuning, apply regression heads)

● Apply techniques to similar datasets in Togo



Q+A
thank you!

contact: satej@berkeley.edu


