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caveat:



MOTIVATION

fine-grained estimates of poverty and vulnerability are important for:

e understanding economic growth and structural transformation
® tax base administration
e land and tenure management

e distribution of social protection



MOTIVATION

fine-grained estimates of poverty and vulnerability are important for:

e distribution of social protection (this work’s focus)



MOTIVATION

in previous work, there is a tradeoft between scale and granularity

national-scale estimates at:

e the village level

e the neighborhood level

satellite tile level (e.g., tiles that are 1-2

square kilometres in area)

household-level estimation:

® single village in Kenya; /N = 231

® single city in China; N =238

No approaches using deep learning at this

resolution.



MOTIVATION
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compare expert-curated features
with deep learning in predicting
household level poverty



DATA: REQUIREMENTS & FUSION

THIS WORK

satellite imagery

Google Static Maps

OTHER OPTIONS

Maxar, DigitalGlobe,

SkySat




DATA: SATELLITE IMAGERY SCALES
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DATA: REQUIREMENTS & FUSION

ground truth labels

building footprints

satellite imagery

THIS WORK

GiveDirectly asset survey
N, = 100,000

OTHER OPTIONS

LSMS, DHS

OpenBuildings

OSM, MSFT buildings,

custom segmentation

Google Static Maps

Maxar, DigitalGlobe,

SkySat




DATA: LINKING SURVEYS TO BUILDINGS

point-in-polygon GDPS buffer intersection scene heuristic

Matched dataset: N = 20,000




DATA: REQUIREMENTS & FUSION

ground truth labels

building footprints

satellite imagery

THIS WORK

GiveDirectly asset survey
N, = 100,000

OTHER OPTIONS

LSMS, DHS

OpenBuildings

OSM, MSFT buildings,

custom segmentation

Google Static Maps

Maxar, DigitalGlobe,

SkySat




METHODS: FEATURIZATION

Manually-curated features:

1.
2.
3.

co Ol ogn G

building footprint size

total count of buildings in scene
minimum distance to nearest
neighboring building

average distance to nearest 4
neighboring buildings

spectral band: Red

spectral band: Green

spectral band: Blue

RGB 16-bit composite

Deep-learning based approach:

Artificial neural network image
classification models trained on

ImageNet fed satellite images as input

Intermediate representations of

classifier used as features

No manual curation



RESULTS: AGGREGATE PERFORMANCE

feature set performance optimal hyperparameters
R* MSE | #estimators | learning rate | maximum tree depth
explicit featurization || 0.1199 | 121.09 100 0.1 3
ConvNeXt-featurized || 0.1182 | 121.34 5000 0.01 none
ResNeti8-featurized || 0.0188 | 135.01 1000 0.01 1




RESULTS: FEATURE IMPORTANCE
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FUTURE WORK

e Higher-resolution satellite imagery
® More manual features
e Further refinement of deep-learning (fine-tuning, apply regression heads)

® Apply techniques to similar datasets in Togo



thank you!

contact:




