Under Control? Price Ceiling, Queuing, and Misallocation: Evidence from the Housing Market in China

Qiyao Zhou*

*Department of Economics, University of Maryland

May 12, 2024

Motivation

- ▷ Price control is widely used in housing, energy, and healthcare
 - e.g., Rent control in New York City, Stockholm, San Francisco

Motivation

- ▷ Price control is widely used in housing, energy, and healthcare
 - e.g., Rent control in New York City, Stockholm, San Francisco
- ▷ The literature uses a **static** approach to analyzes the price control:
 - Under-supply
 - Misallocation (cannot distinguish buyers based on their WTP)

Motivation

- ▷ Price control is widely used in housing, energy, and healthcare
 - e.g., Rent control in New York City, Stockholm, San Francisco
- ▷ The literature uses a **static** approach to analyzes the price control:
 - Under-supply
 - Misallocation (cannot distinguish buyers based on their WTP)
- ▷ An important dimension that is often ignored: waiting costs
 - In the market with excess demand, buyers who cannot get what they want at the current time need to **re-enter in the future**.
 - The average waiting time to get into a rent-controlled apartment in Stockholm is 10 years (BBC).

ВВС

Home News Sport Business Innovation Culture Travel Earth Video Live

The city with 20-year waiting lists for rental homes

17th May 2016, 08:05 EDT

< Share

By Maddy Savage Features correspondent @maddysavage

Think things are bad where you live? This town's queue for rent-controlled housing is so long it's being considered by the Guinness Book of World Records.

Research questions

- ▷ How to model waiting when households face a price ceiling?
- ▷ How to quantify the welfare loss associated with the price ceiling?
- ▷ How does the price ceiling compare with alternative policies?

This paper

▷ Analyze the price ceiling on the housing market in Shanghai

- New house prices are capped
- Existing house prices are market-driven
- A lottery system is used to allocate the new houses
- This has been implemented in most large cities in China
- Annual new house sales is 16 % of China's GDP in 2017

This paper

▷ Analyze the price ceiling on the housing market in Shanghai

- New house prices are capped
- Existing house prices are market-driven
- A lottery system is used to allocate the new houses
- This has been implemented in most large cities in China
- Annual new house sales is 16 % of China's GDP in 2017
- ▷ Specify and estimate a structural model that incorporates waiting
- ▷ Conduct counterfactual exercises:
 - Housing vouchers
 - Increase in supply

Preview of findings

- ▷ Waiting costs play an important role
 - Welfare loss from price ceiling was \$13 billion from 2018 to 2020
 - Waiting costs: \$5 billion; Misallocation: \$8 billion
 - Consumer gains: \$1.3 billion
 - Consumer gains due to lower prices are offset by waiting costs and misallocation.

Preview of findings

- ▷ Waiting costs play an important role
 - Welfare loss from price ceiling was \$13 billion from 2018 to 2020
 - Waiting costs: \$5 billion; Misallocation: \$8 billion
 - Consumer gains: \$1.3 billion
 - Consumer gains due to lower prices are offset by waiting costs and misallocation.
- ▷ Counterfactual policies: distribute housing vouchers
 - Vouchers can significantly reduce welfare loss
 - They achieve similar policy outcomes in reducing the housing prices faced by consumers
 - They result in more equitable outcomes (by subtle design)

Literature

- ▷ Empirical literature on price ceiling in the housing market:
 - Allocative costs: Glaeser and Luttmer (2003)
 - Under-supply: Sims (2007); Diamond et al. (2019)
 - Spillover effects: Autor et al. (2014)
 - Renter mobility: Diamond et al. (2019)

Literature

▷ Empirical literature on price ceiling in the housing market:

- Allocative costs: Glaeser and Luttmer (2003)
- Under-supply: Sims (2007); Diamond et al. (2019)
- Spillover effects: Autor et al. (2014)
- Renter mobility: Diamond et al. (2019)

This paper:

- ▷ Incorporate **waiting** into the analysis of price ceiling
 - Glaeser (1996) models it in a theoretical framework
 - Most empirical works have not considered waiting seriously
 - A tractable framework to model price ceiling with waiting
- ▷ Use a structural approach to quantify the welfare effects of price ceiling
 - Most existing literature uses a reduced-form approach
 - Better understand the welfare effects
 - Better counterfactual policy experiments

Literature

- ▷ Housing market regulations in China
 - Bai et al. (2014); Agarwal et al. (2020)

This paper: First work to study the impact of price ceiling on new houses

▷ Design of allocation mechanisms:

• Agarwal et al. (2021); Li (2018); Waldinger (2021); Lee et al. (2023); Galiani et al. (2015)

1. Motivation

2. Background

3. Model

4. Data

5. Results

6. Counterfactual

7. Appendix

Background

- ▷ Houses are increasingly unaffordable in large cities in China
 - In Shanghai, a 90 m² house costs **25** years of a median household's salary (Glaeser et al., 2017)
- ▷ A price ceiling on new houses was introduced in Shanghai in July 2017
 - Existing houses are not subject to this price ceiling
 - A lottery is used to allocate the new houses for each project
 - A household typically needs to participate in **multiple** lotteries to get a new house
 - Different new apartment complexes are subject to varying ceilings

Background

- ▷ Prominent waiting costs
 - Financial cost (deposit around 30% of the housing price)
 - Time cost
 - Pay additional rent and live in undesirable places
 - Psychological anxiety

Background

- ▷ Prominent waiting costs
 - Financial cost (deposit around 30% of the housing price)
 - Time cost
 - Pay additional rent and live in undesirable places
 - Psychological anxiety
- ▷ Strict reselling and purchase restrictions
 - New houses are not allowed to resell within 2 years of the purchase
 - An additional 6% transaction tax is imposed on sales after 2 years from the purchase
 - Households owning no more than one houses are eligible to buy
 - Speculations are rare: Less than 1% of price-capped new houses sold in 2018 appeared on the existing house market in 2021

Price ceiling in Shanghai

1. Motivation

2. Background

3. Model

4. Data

5. Results

6. Counterfactual

7. Appendix

Demand

- \triangleright *i*'s choice set: {new house *j*, existing house *j'*, waiting}
- \triangleright *i*'s indirect utility function of **successfully** purchasing house *j*:

$$u_{ij} = x_j \beta_i - \alpha_i p_j + \xi_j + \epsilon_{ij}$$

• $\epsilon_{ij} \sim \text{i.i.d.}$ extreme type 1 value distribution.

Demand

- \triangleright *i*'s choice set: {new house *j*, existing house *j'*, waiting}
- \triangleright *i*'s indirect utility function of **successfully** purchasing house *j*:

$$u_{ij} = x_j \beta_i - \alpha_i p_j + \xi_j + \epsilon_{ij}$$

- $\epsilon_{ij} \sim \text{i.i.d.}$ extreme type 1 value distribution.
- \triangleright New versus existing houses:
 - *c_i*: per-period waiting costs (Glaeser, 1996; Johnston et al., 2023)

Demand

- \triangleright *i*'s choice set: {new house *j*, existing house *j'*, waiting}.
- \triangleright *i*'s indirect utility function of **successfully** purchasing house *j*:

$$u_{ij} = x_j \beta_i - \alpha_i p_j + \xi_j + \epsilon_{ij}$$

- ▷ Tradeoff between new and existing houses:
 - c_i : per-period waiting costs (Glaeser, 1996)

Existing house
$$j' \longrightarrow x_{ji}\beta_i - \alpha_i p_{ji} + \xi_{ji} + \epsilon_{iji}$$

15/45

Demand

▷ Household i's value function:

$$V_{i,t} = max\left[v_{ij,t}(N); v_{ij',t}(E); v_{i,t}(W); 0\right]$$

 \triangleright The lottery winning prob is $Pr_{j,t}$:

$$v_{ij,t}(N) = Pr_{j,t}U_{ij,t} + (1 - Pr_{j,t})U_{i,t}(W)$$
$$v_{ij',t}(E) = U_{ij',t}(E)$$
$$v_{i,t}(W) = U_{i,t}(W)$$

▷ Household *i*'s valuation of purchasing new house *j*:

$$v_{ij,t}(N) = U_{ij,t} - \underbrace{\frac{1 - Pr_{j,t}}{Pr_{j,t}}c_i}_{\text{Waiting costs}} + \underbrace{\frac{1 - Pr_{j,t}}{Pr_{j,t}}\Delta_{i,t+1}}_{\text{Future impact}}$$

Where
$$\Delta_{i,t+1} = V_{i,t+1} - V_{i,t}$$

Demand: Stability assumption

1

- ▷ Stability assumption: Households' expected valuation of being in the pool tomorrow is the same as today: $\Delta_{i,t+1} = 0$
- \triangleright Under the stability assumption, the indirect utility function u_{ij} for **both** new and existing houses:

$$u_{ij} = x_j \beta_i - \alpha_i p_j + \xi_j + \epsilon_{ij} - \underbrace{\frac{1 - Pr_{j,t}}{Pr_{j,t}}c_i}_{\text{Waiting costs}}$$

• e.g., if
$$Pr_{j,t} = 0.1$$
, then $\frac{1 - Pr_{j,t}}{Pr_{j,t}}c_i = 9c_i$

- \triangleright Find a mapping between $Pr_{j,t}$ and the expected waiting time
- Demand can be estimated using the Berry, Levinson, and Pakes (1995, 2004) standard demand estimation algorithm

Estimation of a more flexible demand model

- \triangleright Relax the stability assumption. $\Delta_{i,t+1}$ does not necessarily equal 0
- ▷ Following Lee et al., (2023) I assume:
 - Households become active for a maximum of 6 periods
 - Around 5% households stay in the market > 4 periods
 - Results remain robust when I use the alternative thresholds
 - Households have perfect foresight

Estimation of a more flexible demand model

- \triangleright Relax the stability assumption. $\Delta_{i,t+1}$ does not necessarily equal 0
- ▷ Following Lee et al., (2023) I assume:
 - Households become active for a maximum of 6 periods
 - Around 5% households stay in the market > 4 periods
 - Results remain robust when I use the alternative thresholds
 - Households have perfect foresight

⊳ Estimation:

- **Inner loop:** Using backward induction, I solve the households' dynamic problem, and obtain the model-predicted choice probability
- **Middle loop:** Iterate mean utility parameters that equate the observed market share and the model predicted market share. Use GMM-IV to find the linear parameters (price, waiting cost, and other covariates), and form a criteria function
- **Outer loop:** Iterate over non-linear parameters to minimize the criteria function

Supply

▷ New house supply

• Supply of new houses is predetermined: \overline{K}_j . The average construction time is around 3 to 4 years.

Sample period: 2018-2020

• Long-term new house supply also tends to be inelastic Land is owned by the state

More details: New house supply

▷ Existing house supply

- Supply of existing houses is a binary choice problem.
- Current residents decide whether to sell or not based on a given price. (Calder-Wang, 2022; Lee et al. 2023)
- Incorporate forward-looking (Arcidiacono and Miller, 2011):

$$lns_{1jt+1} - (lns_{0jt} - lns_{1jt}) = \gamma + \alpha(p_{j,t+1} - p_{j,t}) + (v_{1jt,s+1} + v_{0jt,s} - v_{1jt+1,s})$$

Equilibrium

 \triangleright New house: $\forall j, new$:

 $\underbrace{D_j(\bar{p}_j, \mathbf{Pr}_{j,new}, p_{-j}, \mathbf{Pr}_{-j})}_{D_j(\bar{p}_j, \mathbf{Pr}_{j,new}, p_{-j}, \mathbf{Pr}_{-j})} = \underbrace{\bar{K}_j}_{L_j(\bar{p}_j, \mathbf{Pr}_{j,new}, p_{-j}, \mathbf{Pr}_{-j})}$ # of lottery participants Supply Equilibrium queuing line

Equilibrium

 \triangleright New house: $\forall j, new$:

$$\underbrace{D_{j}(\bar{p_{j}}, Pr_{j,new}, p_{-j}, Pr_{-j})}_{\text{\# of lottery participants}} = \underbrace{\bar{K_{j}}}_{\text{Supply}} + \underbrace{L_{j}(\bar{p_{j}}, Pr_{j,new}, p_{-j}, Pr_{-j})}_{\text{Equilibrium queuing line}}$$

 \triangleright Existing house: $\forall j, old$:

$$\underbrace{D_{j'}(\mathbf{p}_{j'}, 1, p_{-j}, Pr_{-j})}_{\underbrace{S_{j'}(\mathbf{p}_{j'})}_{j'}} = \underbrace{S_{j'}(\mathbf{p}_{j'})}_{\underbrace{S_{j'}(\mathbf{p}_{j'})}_{j'}}$$

Existing house demand

Existing house supply

1. Motivation

2. Background

3. Model

4. Data

5. Results

6. Counterfactual

7. Appendix

Data

▷ New house data

- Price ceiling; supply of new houses; # of lottery participants
- Source: Official documents and CRIC (China Real Estate Information Center)
- Other new house characteristics come from Lianjia dataset

▷ Lottery participation data

- It comes from Shanghai Oriental Public Lottery Office
- A unique id to match the buyers across lotteries

Existing house data

- Lianjia dataset
- 116,145 transaction records from 2018 to 2020
- Around 25% of all existing house transactions in Shanghai
- Houses' hedonic characteristics

Lottery winning probability and average waiting time

Figure 1: Lottery winning probability and waiting time

Under the stability assumption, the expected waiting time is: $\frac{1 - Pr_{j,t}}{Pr_{t,t}}$

QIYUO ZHOU	Qiy	ao	Z	hou	
------------	-----	----	---	-----	--

Instruments

- ▷ IV for price ceiling: land price
 - The government sets the price ceiling based on the land price
 - Unobserved location effects are absorbed by subdistrict fixed effects
- ▷ **IV for existing house price:** The number of listings for existing houses in adjacent zipcodes with similar characteristics
 - Bayer, Ferreira and Mcmillan (2007); Calder-Wang (2023)

Instruments

- ▷ IV for price ceiling: land price
 - The government sets the price ceiling based on the land price
 - Unobserved location effects are absorbed by subdistrict fixed effects
- ▷ IV for existing house price: The number of listings for existing houses in adjacent zipcodes with similar characteristics
 - Bayer, Ferreira and Mcmillan (2007); Calder-Wang (2023)
- $\triangleright \text{ IV for waiting line } \frac{1 Pr_{j,new}}{Pr_{j,new}}: \text{ Supply of new houses } \bar{K}_j$
 - $Pr_{j,new} = \frac{K_j}{D_j}$
 - \bar{K}_j is a pre-determined variable
- ▷ Supply-side IV: The aggregate number of link clicks of the same type house in Lianjia website in previous periods

- 1. Motivation
- 2. Background
- 3. Model
- 4. Data

5. Results

- 6. Counterfactual
- 7. Appendix

Demand estimation results

		(1) Stability A	(2) Assumption	(3) Dynami	(4) c Model
Price (10K yuan)	Price · rich	-0.946*** (0.298)	-0.801*** (0.253) 0.344** (0.144)	-0.855*** (0.127)	-0.696*** (0.070) 0.247** (0.090)
Waiting	Waiting · rich	-0.30*** (0.113)	-0.326*** (0.108) 0.080 (0.164)	-0.323*** (0.058)	-0.383*** (0.017) 0.122 (0.189)
Subdistrict by house type FE Quarter FE District by year FE		X X X	X X X	X X X	X X X

Supply of the existing houses

Price (10K yuan)	0.543*** (0.193)
Subdistrict by house type FE	Х
Quarter FE	Х
District by year FE	Х

Implied supply elasticity: 2.7

The magnitude is similar to Lee et al., (2023) in Singapore

Model fit

1. Motivation

2. Background

3. Model

4. Data

5. Results

6. Counterfactual

7. Appendix

Welfare calculation without price ceiling

in billion USD	CS	PS	SS	total surplus	price
w/o price ceiling with price ceiling price ceiling impact	100.94 102.25 1.3	109.69-C 96.17-C -13.5	115.77 114.87 -0.9	326.40-C 313.29-C -13.1	-0.016

Notes: CS: Consumer Surplus; PS: Producer (developer) surplus; SS: Existing house seller surplus.

Welfare calculation without price ceiling

in billion USD	CS	PS	SS	total surplus	price
w/o price ceiling with price ceiling price ceiling impact	100.94 102.25 1.3	109.69-C 96.17-C -13.5	115.77 114.87 -0.9	326.40-C 313.29-C -13.1	-0.016

Notes: CS: Consumer Surplus; PS: Producer (developer) surplus; SS: Existing house seller surplus.

- ▷ Waiting cost: **5.1** billion USD; Misallocation: **8** billion USD
- ▷ Consumer surplus: **+ \$1.3 billion**; Producer surplus: **- \$ 13.5 billion**.
 - Consumer gains from lower prices were offset by waiting and misallocation.

Housing vouchers

- ▷ Distributing housing vouchers can also improve affordability.
- ▷ Conceptually, vouchers can significantly increase welfare.
 - No waiting
 - Less misallocation
- If designed properly, they can also achieve more equitable outcomes (Ludwig et al., 2013)
- ▷ This paper considers two types of vouchers:

A 4% voucher to all house buyers

A 6% voucher to buyers of houses below 90 m^2

Housing vouchers

in billion USD	CS	PS	SS	subsidy	total surplus	Δ welfare	Δp
w/o price ceiling (benchmark)	100.94	109.69-C	115.77	0	326.40-C		
with price ceiling (current)	102.25	96.17-C	114.87	0	313.29-C	-13.11	-0.016
4% voucher to all houses	106.44	114.12-C	122.74	17.43	325.87-C	-0.53	-0.016
6% voucher to houses $\leq 90m^2$	105.88	110.27-С	121.81	12.18	325.77-С	-0.63	-0.018

- ▷ The government can finance these vouchers by levying a lump-sum tax from the developers
 - The developers are willing to pay the tax T as long as: $T < PS_{voucher} - PS_{w/pc}$ (loss from price ceiling)
 - Quasi Pareto Improvement

Different vouchers

Distributional impact: Price ceiling

4% voucher to all buyers

6% voucher to buyers of houses $\leq 90m^2$

Conclusion

- \triangleright I study the equilibrium impact of price ceiling.
 - Waiting cost plays a pivotal role
- Welfare loss due to the price ceiling in Shanghai from 2018 to 2020 is around 13 billion US dollars (4% of the total surplus)
 - Waiting costs: \$ 5 billion; Misallocation: \$ 8 billion
- ▷ Housing vouchers are more efficient and more equitable
 - No waiting, and less misallocation
- \triangleright The framework developed in this paper can be applied in other settings:
 - e.g., Rent control; healthcare market in Canada; H1B lottery

Land market outcomes

Figure 2: Residential land supply

Demand model details

Re-write the indirect utility function:

- \triangleright Mean utility: $\delta_j = x_j \beta + p_j \bar{\alpha} + \frac{1 Pr_{j,new}}{Pr_{j,new}} \bar{c}$
- $\vdash \text{ Heterogeneous part: } \lambda_{ij} = u_{ij} \delta_j$
- ▷ i's prob of choosing j: $s_{ij} = \frac{exp(\delta_j + \lambda_{ij})}{1 + \sum_{j,old} exp(\delta_{j,old} + \lambda_{ij,old}) + \sum_{j,new} exp(\delta_{j,new} + \lambda_{ij,new})}$ ▷ Berry inversion: market share $s_j = \int \int s_{ij} dG(\alpha_i, c_i)$
- Note that the market share s_j can be directly observed from the data. $P_{i,new} = \frac{\bar{K}_j}{N * s_i}$

back

Dynamic supply model

- \triangleright Every period, the owner of type *j* house chooses whether to sell or not.
 - If she sells, she leaves the market. Utility: $\omega_{1jt} = \alpha p_{j,t} + v_{1j,t} + v_{1jt,s}$
 - If not, she continues to the next period. Utility:

 $\omega_{0jt} = EV_{st+1} + v_{0j,t} + v_{0jt,s}$

- ▷ Relative utility of selling against not selling: $lns_{1jt} - lns_{0jt} = \alpha p_{j,t} - EV_{st+1} + v_{1j,t} - v_{0j,t}$
- \triangleright The inclusive value:

 $EV_{st+1} = \gamma + ln(exp(\omega_{1jt+1}) + exp(\omega_{0jt+1})) = \gamma + \omega_{1jt+1} - ln(s_{1jt+1})$

▷ Finally, the dynamic supply problem can collapse to a static one (Arcidiacono and Miller, 2011):

 $lns_{1jt+1} - lns_{0jt} + lns_{1jt+1} = \gamma + \alpha(p_{j,t+1} - p_{j,t}) + (v_{1jt,s+1} + v_{0jt,s} - v_{1jt+1,s})$

• Intuition: The model incorporates the forward-looking behavior by leveraging the next periods' market shares.

Appendix

Estimation details

- ▷ Product definition:
 - Existing house: own/subdistrict (similar to zipcode) by house type
 - New house: apartment complex
 - House types: small (< 60 m^2 , 35 % of the transaction); medium (60-90 m^2 , 40 % of the transaction); large (> 90 m^2 , 25 % of the transaction)
- ▷ Subdistrict
 - Similar to zipcode
 - Area: around 4-5 km^2 in downtown, larger in suburban;
 - Around 100,000 population
 - Little variation in the school district
 - 218 subdistricts in Shanghai

Model fit

- y-axis: New house prices predicted by the structural model when the \triangleright price ceiling is removed.
- x-axis: Mean of the nearby existing house price (adjusted for hedonic \triangleright characteristics).

Figure 3: Demand model fit

40/45

Impact on the existing house market

Figure 4: Impact of the new house price ceiling on the existing house market

back

Housing voucher to all houses

42/45

Appendix

Housing vouchers to houses $\leq 90 m^2$

Oiv	0.5	Zho	
Qiya	10 Z	2110	u

Waiting to sorting

in billion USD	CS	SS	PS	total surplus	welfare decomposition	
					waiting cost	misallocation
waiting cost=0	109.27	111.19	96.17-C	316.62-C	0	9.8
with price ceiling	102.25	114.87	96.17-C	313.29-С	5.1	8.0

\triangleright When the waiting cost goes to 0:

- Misallocation increases (waiting to sorting).
- Total welfare loss decreases.

Elastic new house supply

in billion USD	CS	PS	SS	total surplus	Δ welfare
w/o price ceiling (elastic K) w/o price ceiling ($K = \overline{K}$) with price ceiling	104.22 100.94 102.25	111.62-C 109.69-C 96.17-C	115.63 115.77 114.87	331.47-C 326.40-C 313.29-C	18.18 13.11

Notes: (1) CS: Consumer Surplus; PS: Developer surplus; SS: Seller surplus. (2) 20% of the sales revenue becomes the PS.

- ▷ Assumption: New house supply elasticity=1.5
- ▷ Welfare loss enlarges from \$ 13.1 billion to \$ 18.18 billion.
- ▷ Due to the supply reduction effect of the price ceiling, CS decreases.
- \triangleright Price ceiling reduces new house supply by 14%.