Evaluating Urban Planning: Evidence from Dar es Salaam

Vernon Henderson (LSE) Francisco Libano-Monteiro (LSE) Martina Manara (Sheffield) Guy Michaels (LSE) Tanner Regan (GWU)

Land and Poverty Conference, World Bank May 2024

Challenge: urban planning in LMICs

Cities in HICs: urban planning plays central role

▶ Public use (esp. roads) 40-50% of developed land; private land zoned or regulated

Challenge: urban planning in LMICs

Cities in HICs: urban planning plays central role

- ▶ Public use (esp. roads) 40-50% of developed land; private land zoned or regulated
- Cities in LIC/LMICs: planning often absent or ineffective
 - Informality may lower private investments and inhibit public service provision
 - These cities are growing fast and face proliferation of slums

Response: 'De novo' (greenfield) urban planning

- 'De novo' urban planning is important policy tool to address informality problem
 - Purchase cheap agricultural land on urban fringe
 - Partition into formal plots with minimal services mostly unpaved roads
 - People buy plots and build their own homes
- World Bank financed such 'Sites & Services' in many countries (1970s & 80s)
 - Policy stopped in 80s: low repayment rates and exclusion of poorest
 - But cost effective in long-run: raises land values, attracts private investment, prevents deterioration of public services (Michaels et al. 2021, Owens et al. 2018).
 - Recently, some African governments picked it up (e.g. Ethiopia, Rwanda, Tanzania)
- So, de novo planning important for urban development, but:
 - Scant evidence on how best to do it!

This paper: '20k' projects in Dar es Salaam, Tanzania \sim 2000-2005

This paper: '20k' projects in Dar es Salaam, Tanzania \sim 2000-2005

How do planning choices within neighbourhoods affect outcomes?

This paper: '20k' projects in Dar es Salaam, Tanzania \sim 2000-2005

How do planning choices within neighbourhoods affect outcomes?

- Planning choices:
 - Residential: size of own plot and neighbouring plots
 - ▶ Non-residential: planned public and commercial uses, local access roads
- Outcomes:
 - Bare-land transaction values
 - ▶ Housing investment and timing (developed or not by ~2020)
 - Educational attainment (landowning residents)

20k areas in Dar es Salaam

- thin lines: 20k areas (labelled)
- bold lines: pre-existing major paved roads
- dashed lines: city edge

"Evaluating Urban Planning" Henderson, Libano-Monteiro, Manara, Michaels, Regan

Descriptive: prices in and outside of 20K areas

In price_{p,t} = β In size_p + γ Non20kS_p + δ Non20kU_p + η_t + $\mu_{l(p)}$ + $\varepsilon_{p,t}$

Note: plot p sold at time period t in neighborhood l(p)

	(1)	(2)
	Ln Price	Ln Price
Ln plot size	0.71	0.69
	(0.054)	(0.041)
Non-20K Surveyed	-0.23	-0.27
	(0.16)	(0.12)
Non-20K Unsurveyed	-0.70	-0.71
	(0.099)	(0.079)
Mean Outcome	17	17
20K or Nearest FE		\checkmark
Ν	2074	2074

- ► 20k +100% vs informal blue
 - 31% town planning red
 - 69% property rights (title and boundaries) blue - red

Example: plots of different sizes in Tuangoma with insula and superinsula

Finding 1: price of land (per sqm) falls with plot size

Spatial RD: at same location, large plots valued less

Spatial RD: at same location, large plots valued less

Price per square metre difference suggests misallocation, back-of-envelope:

split one 1600sqm (US\$16.7k) into four 400sqm plots (US\$6.4k) \rightarrow gains (US\$7.8k, or ~47%) accounts for per plot costs at time of planning (US\$375) but nowadays splitting plots is difficult (legal and procedural barriers)

"Evaluating Urban Planning" Henderson, Libano-Monteiro, Manara, Michaels, Regan

Finding 2: small plots are much more densely developed by 2020

Share Built_i = $\sum_{b} \beta_{b} \mathbb{1}(\text{size}_{i} \in b) + \mu_{l(i)} + \varepsilon_{i}$

but, large plots similarly built-upon by 2020

Plot is $\text{Built}_i = \sum_b \frac{\beta_b}{\beta_b} \mathbb{1}(\text{size}_i \in b) + \mu_{l(i)} + \varepsilon_i$

Small plots provide more housing and have higher population density

	Mean pop. per built res. plot	Share of Plots Built	Mean plot size (sqm)	Pop. dens residential (ppl/sqkm)
Small Plots (≤800sqm)	5.3	0.50	629	4166
Medium Plots (800-1600sqm)	5.4	0.49	1179	2232
Large Plots (\geq 1600sqm)	5.6	0.49	1961	1392
All Plots	5.4	0.49	1040	2552

Finding 3: small plots have positive externality on built development

$$\mathbf{y}_i = \beta \mathbf{L}_{SI(i)} + \mathbf{\delta}_0 \mathsf{dist}_i * \mathbf{L}_{SI(i)} + \mathbf{\delta}_1 \mathsf{dist}_i * (1 - \mathbf{L})_{SI(i)} + \mu_{SP(i)} + \mathbf{x}'_i \gamma + \varepsilon_i \mathbf{x}_i \mathbf{x}_$$

Note: cell i in super-insula SI, paired SP, with i's nearest other super-insula.

Super-insula:

- contiguous S, M, or L insula
- Moving 'deeper' into small-plot area:
 - More dense development
 - More likely plot is built upon
- Deeper into large plots not much

	(1)	(2)
	Share	Plot
	gridcell	is
	built	built
Own Larger	-0.0013	-0.00053
	(0.0026)	(0.011)
Own Smaller \times Dist. (km)	0.053	0.21
	(0.017)	(0.066)
Own Larger \times Dist. (km)	-0.029	0.030
	(0.018)	(0.070)
Ln plot size	-0.066	0.026
	(0.0032)	(0.013)
Mean Outcome	0.11	0.49
N (gridcells)	92753	92753
N (plots)	35525	35525

Finding 4: non-res uses were often planned but not implemented

Finding 5: wealthy households sort into project, and within project

- 20k projects attract relatively wealthy residents
 - average HoH years schooling
 - Dar es Salaam: 8.7 years (LSMS Dar es Salaam 2014)
 - 20k resident: 11.5 years (our survey, N=3230)
 - 20k owner-resident: 13.8 years (our survey, N=1662)

Finding 5: wealthy households sort into project, and within project

- 20k projects attract relatively wealthy residents
 - average HoH years schooling
 - Dar es Salaam: 8.7 years (LSMS Dar es Salaam 2014)
 - 20k resident: 11.5 years (our survey, N=3230)
 - 20k owner-resident: 13.8 years (our survey, N=1662)

• Access for poor limited (despite low gov't sale price, \sim \$1 per sqm) because:

- Minimum plot size (colonial legacy) was large (~400sqm)
 - only recently lowered to 300sqm nationally (Kironde 2006)
- Process of plot sale was rushed to repay internal gov't loan
 - Insiders: many gov't employees (?)

Finding 5: wealthy households sort into project, and within project

- 20k projects attract relatively wealthy residents
 - average HoH years schooling
 - Dar es Salaam: 8.7 years (LSMS Dar es Salaam 2014)
 - 20k resident: 11.5 years (our survey, N=3230)
 - 20k owner-resident: 13.8 years (our survey, N=1662)

• Access for poor limited (despite low gov't sale price, \sim \$1 per sqm) because:

- Minimum plot size (colonial legacy) was large (~400sqm)
 - only recently lowered to 300sqm nationally (Kironde 2006)
- Process of plot sale was rushed to repay internal gov't loan
 - Insiders: many gov't employees (?)
- within project, resident-owners sort onto plots by size
 - ▶ yrs school ↑ 0.65 for 2x in plot size

- 0. The plots sold, covered project cost (\sim \$1 per sqm)
 - \blacktriangleright land value 2x nearby unplanned areas, but only ${\sim}50\%$ built upon by 2020

- 0. The plots sold, covered project cost (${\sim}\$1$ per sqm)
 - \blacktriangleright land value 2x nearby unplanned areas, but only ${\sim}50\%$ built upon by 2020
- 1. Planned distribution of plot sizes 'sub-optimal'
 - Relatively too few small plots were supplied (price-size elasticity ~ 0.5)

- 0. The plots sold, covered project cost (${\sim}\$1$ per sqm)
 - \blacktriangleright land value 2x nearby unplanned areas, but only ${\sim}50\%$ built upon by 2020
- 1. Planned distribution of plot sizes 'sub-optimal'
 - ▶ Relatively too few small plots were supplied (price-size elasticity ~ 0.5)
- 2. Smaller plots provide more housing
 - Large plots have more open space (share built $\uparrow 0.01$ for 10% in plot size)
 - ▶ Also $\sim 1/3$ population density

- 0. The plots sold, covered project cost (${\sim}\$1$ per sqm)
 - \blacktriangleright land value 2x nearby unplanned areas, but only ${\sim}50\%$ built upon by 2020
- 1. Planned distribution of plot sizes 'sub-optimal'
 - ▶ Relatively too few small plots were supplied (price-size elasticity ~ 0.5)
- 2. Smaller plots provide more housing
 - Large plots have more open space (share built $\uparrow 0.01$ for 10% in plot size)
 - Also $\sim 1/3$ population density
- 3. No evidence of negative small-plot externality
 - rather small-plot neighbours spur development

- 0. The plots sold, covered project cost (~\$1 per sqm)
 - \blacktriangleright land value 2x nearby unplanned areas, but only ${\sim}50\%$ built upon by 2020
- 1. Planned distribution of plot sizes 'sub-optimal'
 - ▶ Relatively too few small plots were supplied (price-size elasticity ~ 0.5)
- 2. Smaller plots provide more housing
 - Large plots have more open space (share built $\uparrow 0.01$ for 10% in plot size)
 - Also $\sim 1/3$ population density
- 3. No evidence of negative small-plot externality
 - rather small-plot neighbours spur development
- 4. Non-residential plots
 - Planned non-res plots not 'valued' (low implementation)

- 0. The plots sold, covered project cost (${\sim}\$1$ per sqm)
 - \blacktriangleright land value 2x nearby unplanned areas, but only ${\sim}50\%$ built upon by 2020
- 1. Planned distribution of plot sizes 'sub-optimal'
 - ▶ Relatively too few small plots were supplied (price-size elasticity ~ 0.5)
- 2. Smaller plots provide more housing
 - Large plots have more open space (share built $\uparrow 0.01$ for 10% in plot size)
 - Also $\sim 1/3$ population density
- 3. No evidence of negative small-plot externality
 - rather small-plot neighbours spur development
- 4. Non-residential plots
 - Planned non-res plots not 'valued' (low implementation)
- 5. Sorting of wealthy resident-owners into the program (and within)
 - ▶ +4 yrs vs. avg HoH in Dar, and yrs school \uparrow 0.65 for 2x in plot size

▶ Feedback very welcome after the talk or over email

Tanner Regan (tanner_regan@gwu.edu)

Bibliography

- Michaels, G., Nigmatulina, D., Rauch, F., Regan, T., Baruah, N. & Dahlstrand, A. (2021), 'Planning ahead for better neighborhoods: Long-run evidence from tanzania', **129**(7), 2112–2156.
- Owens, K. E., Gulyani, S. & Rizvi, A. (2018), 'Success when we deemed it failure? revisiting sites and services projects in mumbai and chennai 20 years later', *World Development* **106**, 260–272.
 - **URL:** *https://www.sciencedirect.com/science/article/pii/S0305750X18300317*