What We Do in the Shadows: How Urban Density Facilitates Information Diffusion

Qing Zhang Google Evan Plous Kresch Oberlin College Clare Stevens Stanford (SIEPR)

World Bank LAND Conference, May 2024

Motivation

- Density is one of the defining characteristics of cities
 - Important source of agglomeration economies: Rosenthal and Strange (2004)
 - Increased knowledge diffusion leads to higher productivity: Jacobs (1969)

- However, testing how density affects information diffusion is difficult:
 - Density is an endogenous decision, based of local conditions
 - "Information" is generally unobservable to the researcher

This Paper

- Exploits national policy in China that requires minimum amount of sunlight for all residential buildings
 - China's expansive size \rightarrow northern cities face shallower solar angles
 - Developers must place taller buildings farther apart \rightarrow Southern cities are more dense

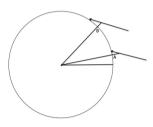
This Paper

- Exploits national policy in China that requires minimum amount of sunlight for all residential buildings
 - China's expansive size → northern cities face shallower solar angles
 - Developers must place taller buildings farther apart → Southern cities are more dense

- Study difference in speed of information diffusion across latitudes in China
 - Measure government and user activity on Local Leader Message Boards
 - Document S-shaped response to increase in government response rates
 - Cumulative increase to posts is 2.7 times higher in southern cities
 - Survey data: similar individuals more likely to gossip in the South

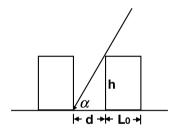
Sunlight Policy in China

- Access to sunlight influenced by feng shui and Soviet building practices

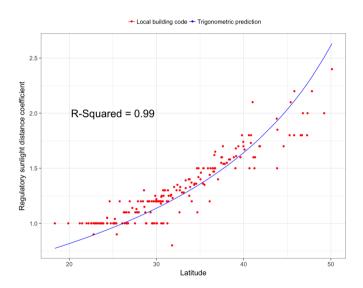

- Codified into law in 1993:
 - Urban Residential Planning and Design Ordinance (GB50180-93)
 - Lowest level of any residential building required to have at least 2 hours of sunshine on *Dahan* (trans: Major Cold) around January 20th
 - Implication: buildings must be farther apart in the North

Latitude and Solar Angle

- Solar angle (α) as a function of latitude (ϕ) in radians:

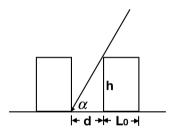

$$\alpha(\phi) = \arcsin\left[\sin(\delta)\,\sin\phi + \cos(\delta)\,\cos(h)\,\cos\phi\right]$$

- Where the declination δ on *Dahan* is approximately -20 degrees ($\delta \approx -\frac{\pi}{9}$)
- Sunlight must reach building by 11am $o h pprox -rac{\pi}{12}$ (approximately -15 degrees)



Sunlight Policy in China

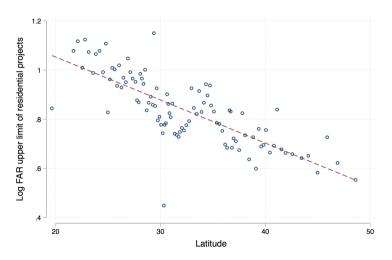
- Local building codes reflect sunlight policy
 - Sunlight distance coefficient = ratio of building distance to height



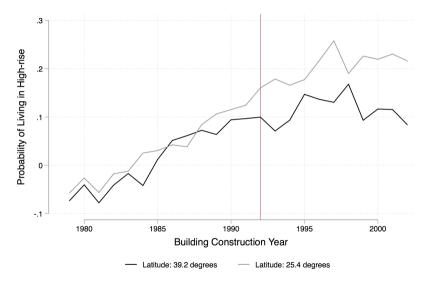
Local Building Codes Reflect Policy

Sunlight Policy in China

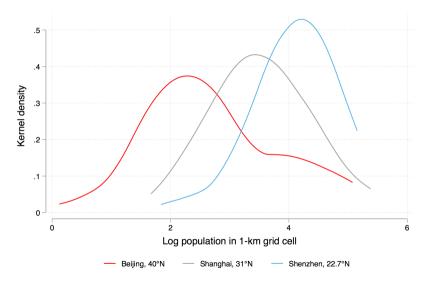
- Local building codes reflect sunlight policy
 - Sunlight distance coefficient = ratio of building distance to height



- Substantial variation in building codes:
 - Changchun (43.79° N) requires buildings 1.95x as far apart as in Kunming (25.19° N)
- Developers required to use officially-sanctioned sunlight analysis software


Data

- Land Transactions from Ministry of Land and Resources
 - Location, zone use, FAR, contract date, etc.
 - Scraped in 2017 \rightarrow 1.3 million transactions
 - 40% of parcels for residential use
- 2005 1% population census (National Bureau of Statistics)
 - HH and individual data, including whether HH lives in high-rise
- Postings on the Local Leader Message Board, run by the People's Daily
 - Sub-boards for all administrative units
 - Government responses to posts viewable to everyone
 - Jiang, Meng and Zhang (2018) scraped data through 2016 \rightarrow 900,000 postings


Latitude Explains Building Density Well

Difference in High Rise Construction after 1993

Population Density Across China's Biggest Cities

Information Diffusion

- How does this affect information diffusion?

- Use Local Leader Message Boards (LLMBs) from (Jiang, Meng and Zhang, 2018)
 - Often grievances or petitions not easily resolved through the legal system
 - Analyze topics of postings using LDA model (Blei, Ng and Jordan, 2003)
 - Wide range of topics: housing expropriation, pollution, teacher compensation, pyramid schemes...
 - Local governments leave public replies to approximately 60% of postings

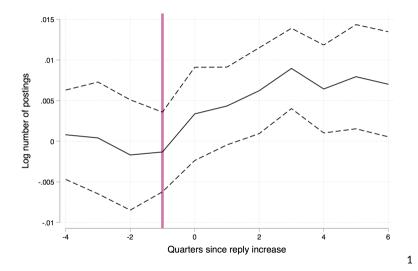
Dynamic Responses to Government Postings

- Measure dynamic response to increase in government postings as:

$$\mathsf{Posts}_{\mathit{ict}} = \gamma_{\mathit{c}} + \delta_{\mathit{it}} + \sum_{i=0}^{J} \beta_{\mathit{j}} \mathsf{Reply}_{\mathit{ict}-\mathit{j}} + \epsilon_{\mathit{ict}}$$

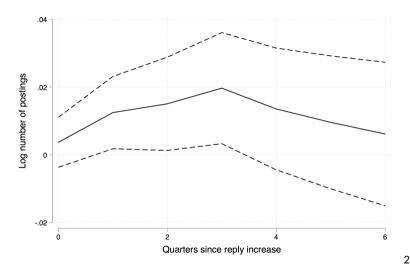
Dynamic Responses to Government Postings

- Measure dynamic response to increase in government postings as:


$$\mathsf{Posts}_{\mathit{ict}} = \gamma_{\mathit{c}} + \delta_{\mathit{it}} + \sum_{j=0}^{J} \beta_{j} \mathsf{Reply}_{\mathit{ict}-j} + \epsilon_{\mathit{ict}}$$

- Study whether density causes differing dynamics with the specification:

$$\begin{aligned} \mathsf{Posts}_{\textit{ict}} &= \gamma_c + \delta_{\textit{it}} + \sum_{j=0}^{J} \beta_j \mathsf{Reply}_{\textit{ict}-j} + \sum_{j=0}^{J} \eta_j \mathsf{Reply}_{\textit{ict}-j} \times \widehat{\mathsf{log} \ \mathsf{FAR}_c} \\ &+ \sum_{j=0}^{J} \mathsf{Reply}_{\textit{ict}-j} \times \sigma_j' \mathsf{X}_c + \epsilon_{\textit{ict}} \end{aligned}$$


- If density leads to faster information diffusion, should expect that Southern cities to respond faster to government replies
- log FAR_c is "predicted FAR" and is a function of latitude
- Add in rich set of city-level controls (X_c)

Dynamic Response to Government Postings

¹Coefficient and 95% CI of dynamic model with 6 lags and 4 leads of reply rate

Cumulative Differential Response Across Latitude

²Difference in response to 10% increase in postings for cities in the 75th and 25th percentile of latitude

Extensions and Robustness

- Suggestive evidence on word-of-mouth from China Social Governance Survey
 - Extensive survey run by Zheng, Su and Zhang (2018)
 - Residents in Southern cities are more likely to gossip or have heard gossip
 - 5 degree increase in latitude → approximately 3% decrease in gossip

- Address threats to validity
 - Attitudes toward government similar across latitude
 - Trust in public institutions similar across latitude
 - Internet use not systematically different across latitude

Next Step - Exploit COVID Lockdown

- Extend analysis using COVID lockdown in China
 - Internet channel still active (on LLMBs)
 - Lockdown "shuts down" the physical proximity from denser buildings
 - Study whether physical interactions play a large part in information diffusion

- Currently scraped LLMBs through 2023
 - Use the lockdown in 2019 as a natural experiment
 - If density's role is through physical proximity \to expect the difference between northern and southern cities to disappear during lockdown

Summary

- Use plausibly exogenous variation in urban density caused by sunlight policy in China

- Find that
 - ... Southern cities are more dense than Northern cities
 - ... Southern cities have faster responses to government postings than Northern ones
 - ... residents of Southern cities more likely to gossip
 - ... cannot be explained by difference in internet usage or attitudes toward government

- Paper points to the role that urban density plays in the diffusion of information