## Property Rights without Transfer Rights: A Study of Indian Land Allotment

#### Christian Dippel<sup>†</sup> Dustin Frye<sup>‡</sup> Bryan Leonard<sup>§</sup>

<sup>†</sup>Ivey & NBER <sup>‡</sup>University of Wisconsin - Madison AAE <sup>§</sup>University of Wyoming

May 15, 2024

# **Motivation: Defining Property Rights**

- ► Land rights are a cornerstone of economic development
- ► Typically think of three dimensions:
  - 1. Exclusion  $\rightarrow$  avoid common-pool problems
  - 2. Definition/demarcation  $\rightarrow \downarrow$  transaction costs
  - 3. Security  $\rightarrow$  investment
- Even in environments with all three dimensions, many "landowners" hold only usufruct rights
  - Land can be used, but limits on transferability or alienability
  - Flavors of paternalism/colonialism
- Not being able to transfer/alienate land is more prevalent among marginalized groups
  - ▶ Indigenous groups in Latin America, sub-Saharan Africa
  - American Indian reservations

# Motivation: Understanding the Role of Transferability in Property Rights

- Large literature on land tenure and economic development
- Focus has been more on *security* dimension of property rights than *transferability* as the source of:

Assurance, Collateralizability and Realizability

- ▶ In many settings it is difficult to disentangle *security* from *transferability* 
  - ▶ De Soto (2000); Goldstein and Udry (2008); Besley et al. (2012)
- We leverage a natural experiment that resulted from "Indian allotment" in the early 20th century
  - Able to isolate *transferability* dimension

## **Background: Indian Land Allotment**

► 1887—1934 "Dawes Era": subdivision into ≈ 160-acre allotments, granted to individual Indians & held in trust

- Cannot be sold outright
- Cannot be used as collateral
- Could not be willed initially
- ► Leasing, change of use, etc. requires BIA approval
- Gain fee simple title after 25 years or declared "competent" by local Indian Agent
- 1934: Indian Reorganization Act ends privatization era & freezes land ownership status
- ► Three types of ownership: tribal, fee simple, allotted trust\* Map

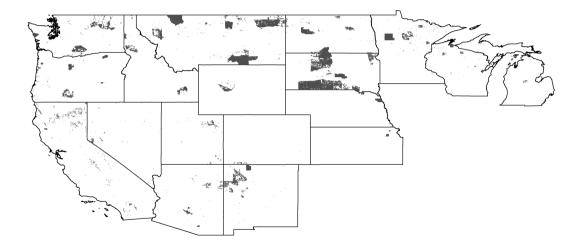
## **Data Components**

General Land Office Records digitized by the BLM

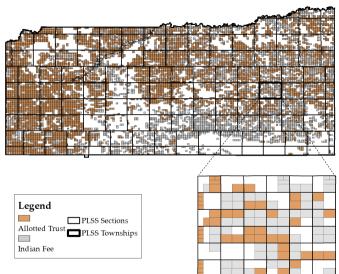
- Name of allottee
- Date of each original allotment & fee simple (if ever)
- Location in the Public Land Survey System

### NWALT Satellite Data

- ▶ 60×60-meter resolution satellite-based land use
- 1974, 1982, 1992, 2002, 2012


### Land Quality

- ▶ NED: elevation and ruggedness (30m resolution)
- Soil productivity index
- Distances to resources and infrastructure
- Weather
- Longitude/Latitude


### Land Patents and the PLSS



## **Allotted Quarter Sections**



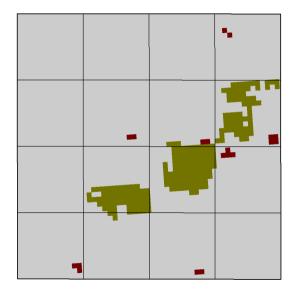
## Checkerboarded Ownership on the Pine Ridge Reservation



## **Data Components**

General Land Office Records digitized by the BLM

- Name of allottee
- Date of each original allotment & fee simple (if ever)
- Location in the Public Land Survey System


### NWALT Satellite Data

- ▶ 60×60-meter resolution satellite-based land use
- 1974, 1982, 1992, 2002, 2012

### Land Quality

- ▶ NED: elevation and ruggedness (30m resolution)
- Soil productivity index
- Distances to resources and infrastructure
- Weather
- Longitude/Latitude

### National Wall to Wall Land Use Trends Database



## Identification

#### Threats

- 1. Selection on land quality
- 2. Selection on individuals

### Solutions

- 1.1 High-resolution spatial fixed effects
- 1.2 Detail granular controls with Variable Selection Model
- 1.3 Randomized Inference Test
- 2.1 Family Fixed Effects
- **2.2** Oster  $\delta$ 
  - ► (Altonji et al. (2005); Oster (2019))

# **Estimating Equation**

$$y_{ij} = \theta \times \text{FeeSimple}_i + \kappa_j + \lambda' X_i + \delta_f + \varepsilon_{ij}$$

- ▶ *y*<sub>*ij*</sub> is outcome of interest in plot *i* in spatial region *j*
- ▶ *FeeSimple*<sup>*i*</sup> is an indicator if the plot has fee-simple ownership
- $\kappa_j$  denotes the spatial fixed effect, which is PLSS Section
- $\delta_f$  denotes allottees' family name fixed effects
  - ► (Deininger and Ali (2008))
- ► *X<sub>i</sub>* includes parcel level traits selected using a Variable Selection Model
  - ▶ (Lindsey et al. (2010))
- Standard errors are clustered by reservation
  - Robust to alternative spatial correlation (Conley (1999, 2008))

## **Transfer Restrictions and Land Use Estimates**

|                     | Any Development |         |         |          | Share Cultivated |           |           |           |
|---------------------|-----------------|---------|---------|----------|------------------|-----------|-----------|-----------|
|                     | (1)             | (2)     | (3)     | -<br>(4) | (5)              | (6)       | (7)       | (8)       |
| FeeSimple           | 0.018**         | 0.014** | 0.015** | 0.019**  | 4.558***         | *4.389*** | *4.515*** | *4.174*** |
|                     | (0.007)         | (0.007) | (0.008) | (0.009)  | (1.053)          | (1.037)   | (1.263)   | (1.232)   |
| Oster $\delta$      |                 | 13.022  | 14.741  | 27.814   |                  | 23.830    | 29.929    | 71.258    |
| HAC SEs (25 kms)    | (0.005)         | (0.005) | (0.006) | (0.008)  | (0.585)          | (0.581)   | (0.666)   | (0.842)   |
| HAC SEs (100 kms)   | (0.006)         | (0.005) | (0.006) | (0.007)  | (0.782)          | (0.774)   | (0.903)   | (1.013)   |
| Adj. R <sup>2</sup> | 0.3539          | 0.3594  | 0.3928  | 0.4072   | 0.7697           | 0.7717    | 0.7933    | 0.8117    |
| Observations        | 85,488          | 85,488  | 77,834  | 67,309   | 85,488           | 85,488    | 77,834    | 67,309    |
| FE Type             | Section         | Section | Section | Section  | Section          | Section   | Section   | Section   |
| # Spatial FEs       | 21,553          | 21,553  | 19,917  | 17,415   | 21,553           | 21,553    | 19,917    | 17,415    |
| # Name FEs          | 0               | 0       | 9,509   | 17,209   | 0                | 0         | 9,509     | 17,209    |
| Covariates          | None            | VSelect | VSelect | VSelect  | None             | VSelect   | VSelect   | t VSelect |

### Mechanisms

► Two channels:

H<sub>1</sub>: credit access primarily affects development and works at *extensive margin* (affects all trust plots)

Corollary: fractionation unlikely to affect development

- ► *H*<sub>2</sub>: *intensive margin* effect of fractionation on agriculture
  - Access to credit is less crucial
  - Ag decisions are recurring.
  - More owners  $\rightarrow$  higher transaction costs

## **Credit Access and Development**

#### **Empirical Setup**

- ► Leverage full NWALT panel (1974–2012) and plot fixed-effects
- Exploit exogenous change in credit supply through state-level bank deregulation

### Findings

- Access to credit explains a significant fraction of the development differences
- ► No significant differences for agricultural cultivation

## **The Fractionation Problem**

### **Empirical Setup**

- ▶ Fractionation due to accumulation of multiple heirs through inheritance
- Indicator of *latent fractionation* from archival data: whether allottee was enumerated in mid-1930s ICR
- This proxies for (unmeasured) age of original allottees; validate that allotments were *sequential* by age, i.e. older allottees had died before mid-1930s

### Findings

- Latent fractionation only impacts allotted-trust land,  $\widehat{\theta_{\text{frac}}^A} < 0$ , and not fee-simple plots,  $\widehat{\theta_{\text{frac}}^F} = 0$ ; and for agriculture, *not* development
- These impacts are larger with earlier allotted plots (more opportunities for fractionation)

# Summary

### **Core Findings:**

 $\blacktriangleright$  Fee simple  $\rightarrow$  13% more likely to be developed and 35% more land in cultivation

#### **Connection to Transferability:**

- Cannot use land as collateral
- Probate issues  $\rightarrow$  fractionation
  - Credit access affects development over time
  - Fractionation frustrates agricultural land use

### **Punchline:**

- Cautionary tale for contemporary land titling efforts
- ▶ Incomplete land rights can be worse than communal property

## **Solutions**

- Tribes could be given the option to
  - (1) return their land to tribal control (under the Cobell law-suit)
  - (2) complete the conversion to fee simple (under the ULC's template for dissolving heir's property)
- Choice should be decentralized to tribes
- Choice of (1) vs (2) can be intermediate, such as e.g. Mexico's *Procede* second land reform (De Janvry et al. 2015)
  - Indigenous farmers were given full title to the land that they had usufruct rights to since the 1930s.
  - Communities (*ejido*) separately decided whether rights would be transferable only within the ejido

### Thank you!

### dustin.frye@wisc.edu