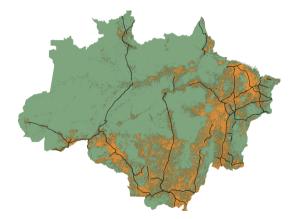
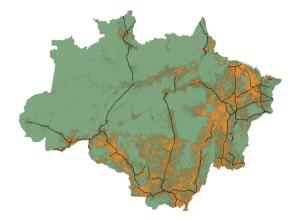
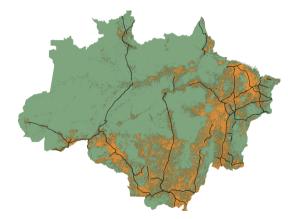
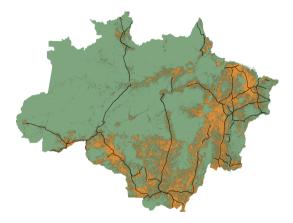

Transportation Infrastructure and Deforestation in the Amazon

Arthur Bragança (World Bank) Rafael Araujo (FGV EESP) Juliano Assunção (PUC-Rio & Climate Policy Initiative)

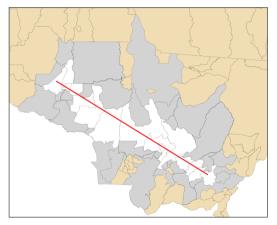

World Bank Land Conference – May 2024


- **490,000 km**² of native forests cleared since 1988 (INPE)
- 95% near roads (< 5.5 km) or rivers (< 1km) (Barber et al. 2014)

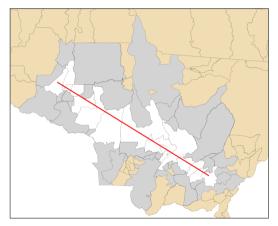

- **490,000 km**² of native forests cleared since 1988 (INPE)
- 95% near roads (< 5.5 km) or rivers (< 1km) (Barber et al. 2014)


- **490,000 km**² of native forests cleared since 1988 (INPE)
- 95% near roads (< 5.5 km) or rivers (< 1km) (Barber et al. 2014)
- Correlation \neq true effect

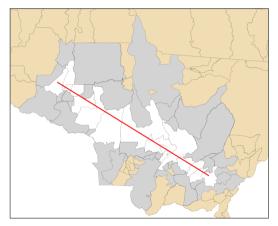
- **490,000 km**² of native forests cleared since 1988 (INPE)
- 95% near roads (< 5.5 km) or rivers (< 1km) (Barber et al. 2014)
- A proper framework is needed



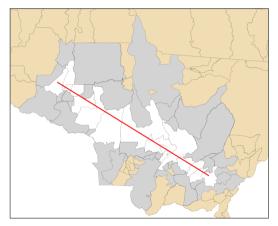
- **490,000 km**² of native forests cleared since 1988 (INPE)
- 95% near roads (< 5.5 km) or rivers (< 1km) (Barber et al. 2014)
- A proper framework is needed
 - 1. Role of roads, railroads, waterways, ports etc. in driving deforestation
 - 2. Compute **environmental cost** of individual projects

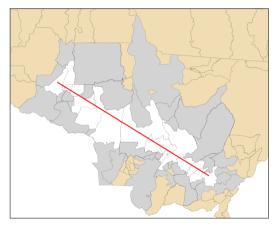

- **490,000 km**² of native forests cleared since 1988 (INPE)
- 95% near roads (< 5.5 km) or rivers (< 1km) (Barber et al. 2014)
- A proper framework is needed
 - 1. Role of **roads**, **railroads**, **waterways**, **ports etc.** in driving deforestation
 - 2. Compute **environmental cost** of individual projects

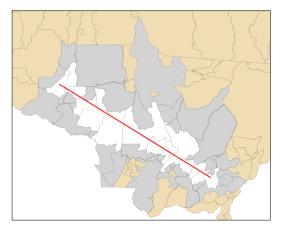
This paper: builds a framework to measure the effects of transportation infrastructure on deforestation in the Amazon

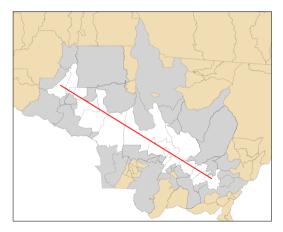


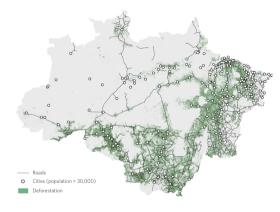
- Transportation infrastructure:

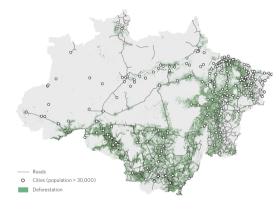

- 1. influences localities it crosses directly
- 2. influences other localities indirectly
- Build inter-regional trade model:
- 1. market access literature (Donaldson and Hornbeck, 2016; Donaldson, 2018)
- 2. two types of land: **consolidated** and **frontier**
- 3. log-linear relationship bt/ deforestation and market access

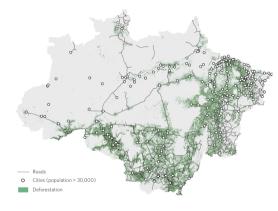

- Transportation infrastructure:
- 1. influences localities it crosses directly
- 2. influences other localities indirectly
- Build inter-regional trade model:
- 1. market access literature (Donaldson and Hornbeck, 2016; Donaldson, 2018)
- 2. two types of land: **consolidated** and **frontier**
- 3. log-linear relationship bt/ deforestation and market access

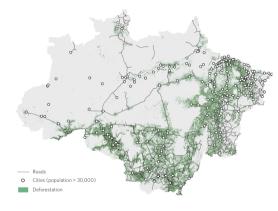

- Transportation infrastructure:
- 1. influences localities it crosses directly
- 2. influences other localities indirectly
- Build inter-regional trade model:
- 1. market access literature (Donaldson and Hornbeck, 2016; Donaldson, 2018)
- 2. two types of land: **consolidated** and **frontier**
- 3. log-linear relationship bt/ deforestation and market access

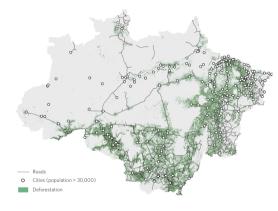

- Transportation infrastructure:
- 1. influences localities it crosses directly
- 2. influences other localities indirectly
 - Build inter-regional trade model:
- 1. market access literature (Donaldson and Hornbeck, 2016; Donaldson, 2018)
- 2. two types of land: **consolidated** and **frontier**
- 3. log-linear relationship bt/ deforestation and market access

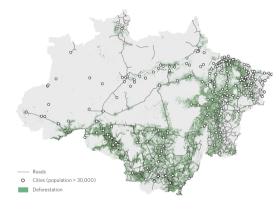

- Transportation infrastructure:
- 1. influences localities it crosses directly
- 2. influences other localities indirectly
 - Build inter-regional trade model:
- 1. market access literature (Donaldson and Hornbeck, 2016; Donaldson, 2018)
- 2. two types of land: **consolidated** and **frontier**
- 3. log-linear relationship bt/ deforestation and market access


- Transportation infrastructure:
- 1. influences localities it crosses directly
- 2. influences other localities indirectly
 - Build inter-regional trade model:
- 1. market access literature (Donaldson and Hornbeck, 2016; Donaldson, 2018)
- 2. two types of land: **consolidated** and **frontier**
- 3. log-linear relationship bt/ deforestation and market access


- Transportation infrastructure:
- 1. influences localities it crosses directly
- 2. influences other localities indirectly
 - Build inter-regional trade model:
- 1. market access literature (Donaldson and Hornbeck, 2016; Donaldson, 2018)
- 2. two types of land: **consolidated** and **frontier**
- 3. log-linear relationship bt/ deforestation and market access


- Transportation infrastructure is endogenous (e.g., close to cities)
- Estimates model using:
- 1. Pixel-level data on deforestation (1990-2019)
- 2. Evolution of transportation network (1980, 1990, 2000, 2010)
- 3. Detailed information on freights
- 4. IV to isolate exogenous changes in transportation costs


- Transportation infrastructure is endogenous (e.g., close to cities)
- Estimates model using:
- 1. Pixel-level data on deforestation (1990-2019)
- 2. Evolution of transportation network (1980, 1990, 2000, 2010)
- 3. Detailed information on freights
- 4. IV to isolate exogenous changes in transportation costs


- Transportation infrastructure is endogenous (e.g., close to cities)
- Estimates model using:
- 1. Pixel-level data on deforestation (1990-2019)
- 2. Evolution of transportation network (1980, 1990, 2000, 2010)
- 3. Detailed information on freights
- 4. IV to isolate exogenous changes in transportation costs

- Transportation infrastructure is endogenous (e.g., close to cities)
- Estimates model using:
- 1. Pixel-level data on deforestation (1990-2019)
- 2. Evolution of transportation network (1980, 1990, 2000, 2010)
- 3. Detailed information on freights
- 4. IV to isolate exogenous changes in transportation costs

- Transportation infrastructure is endogenous (e.g., close to cities)
- Estimates model using:
- 1. Pixel-level data on deforestation (1990-2019)
- 2. Evolution of transportation network (1980, 1990, 2000, 2010)
- 3. Detailed information on freights
- 4. IV to isolate exogenous changes in transportation costs

- Transportation infrastructure is endogenous (e.g., close to cities)
- Estimates model using:
- 1. Pixel-level data on deforestation (1990-2019)
- 2. Evolution of transportation network (1980, 1990, 2000, 2010)
- 3. Detailed information on freights
- 4. IV to isolate exogenous changes in transportation costs

Literature

- Environmental effects of transportation infrastructure Chomitz and Gray (1996); Pfaff (1999); Damania et al. (2018); Asher et al. (2020)
- Drivers of deforestation in the Amazon
 Souza-Rodrigues (2018); Assunção et al. (2020); Araujo et al. (2020); Bragança and
 Dahis (2022)
- Deforestation control policies

Fetzer and Marden (2017); Burgess et al. (2019); Heilmayr et al. (2020); Assunção et al. (2022); Assunção et al. (2023)

- Trade-offs between economic development and environmental protection Foster and Rosenzweig (2003); Copeland and Taylor (2004); Alix-Garcia et al. (2013); Damania et al. (2018); Garg and Shenoy (2021)

Model

Set up (I)

Set of regions indexed by o, two types of agents (firms/producers and workers/consumers), trade cost τ_{od} between each pair of regions o and d

Firms/producers:

- Perfectly competitive producers using Cobb-Douglas production function $MC_o(j|T) = \frac{q_o^{T^\alpha} w_o \gamma_{T_o} 1 - \alpha - \gamma}{z_o^T(j)}$

Workers/consumers:

- Supply inelastically one unit of labor (wage w^o)
- CES preferences over agricultural varieties j; buy from cheapest source $V^o = \frac{w_o}{P_o}$, in which $(P_o)^{1-\sigma} = \int_0^A p_o(j)^{1-\sigma} dj$
- Decide where to live to maximize utility; are freely mobile $V^o = V^d, \forall o, d$

Set up (II)

Capital:

- Capital is freely mobile and supplied elastically

Land:

- Two types of land: consolidated (L) and frontier (F) $F_o(z^C, z^F) = \exp(-(A_o^C z^{C-\theta} + A_o^F z^{F-\theta}))$
- Producers operate in the type of land with lower marginal cost $\bar{p}\left(\frac{q_o^F}{q_o^C}\right) = P\left(\frac{z_o^F(j)}{z_o^C(j)} < \left(\frac{q_o^F}{q_o^C}\right)^{\alpha}\right) = \left[1 + \frac{A_o^F}{A_o^C}\left(\frac{q_o^F}{q_o^C}\right)^{-\theta\alpha}\right]^{-1}$
- Supply of consolidated land is fixed, supply of frontier land is positively sloped $L_o^C = \bar{L}_o^C$ and $q_o^F = B_o (L_o^F)^{\eta}$

Solving the model

- Prices and bilateral trade as functions of measures of market access
 Prices and Exports

 Eaton and Kortum (2002); Redding and Venables (2004)
- Single measure of market access (fixed point) Market Access
 Donaldson and Hornbeck (2016)
- Market clearing conditions:
 - Total output equals to exports to all locations $Y_o = \sum_d X_{od}$
 - Workers are indifferent across locations $V^o = V^d, \forall o, d$
 - Rents across different types of land $\bar{p}_o q_o^F L_o^F = (1-\bar{p}_o) q_o^C L_o^C$

Deforestation and market access in equilibrium

$$(\eta + 1 + \eta \theta \alpha) \log L_o^F = \log \frac{x A_o^F}{B_o \rho^{\gamma} \bar{U}^{\gamma \theta}} + (1 + \gamma) \log M A_o$$

Sufficient statistic

- The ratio between $(1 + \gamma)$ and $(\eta + 1 + \eta \theta \alpha)$ is a sufficient statistic for the effects of transportation infrastructure on deforestation
- Possible to perform counterfactuals (e.g., predict effects of individual projects) using this sufficient statistic

Data

Connecting model and data

- First-order approximation of market access (Donaldson and Hornbeck, 2016)

$$MA_o \cong \sum_d \tau_{od}^{- heta} N_d$$

- Empirical model

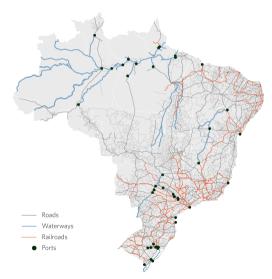
$$\log y_{o,t} = \alpha + \beta \log MA_{o,t_l} + \phi_t X_o + \gamma_o + \gamma_{s,t} + \epsilon_{o,t}$$

- Data for the period 1990-2019

 $y_{o,t}$ is cumulative deforestation in the decade (1990-1999, 2000-2009, 2010-2019) MA_{o,t_l} is initial market access in the decade (1990, 2000, 2010)

Deforestation

Mapbiomas (LANDSAT data)

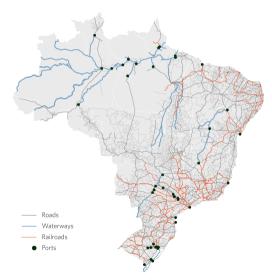

- Classifies land-use at 30-meters pixels: forest, pasture, crop

Measuring deforestation

- Select pixels that were initially classified as forest
- Deforestation (pixel-level): first year in which pixel was classified as non-forest
- **Deforestation (municipality-level):** total area of pixels deforested in each municipality-decade pair

Transportation Network

Figure 1. Network of Transports in Brazil



- Decennial geo-referenced information on the road network (1980-2010, Ministry of Infrastructure
- Decennial geo-referenced information on the rail network (1980-2010, ANTT)
 Hand-coded rail stations operating in each period
- Geo-referenced information on navigable rivers (ANTAQ)

Hand-coded river ports operating in each period

Transportation Network

Figure 1. Network of Transports in Brazil

- Decennial geo-referenced information on the road network (1980-2010, Ministry of Infrastructure
- Decennial geo-referenced information on the rail network (1980-2010, ANTT)
 Hand-coded rail stations operating in each period
- Geo-referenced information on navigable rivers (ANTAQ)

Hand-coded river ports operating in each period

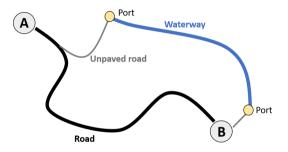
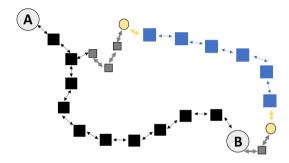
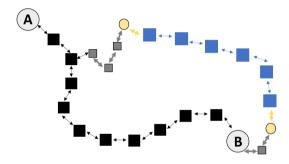

Transportation Network

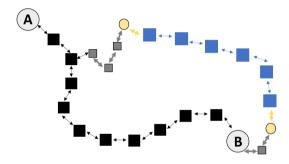
Figure 1. Network of Transports in Brazil


- Decennial geo-referenced information on the road network (1980-2010, Ministry of Infrastructure
- Decennial geo-referenced information on the rail network (1980-2010, ANTT)
 Hand-coded rail stations operating in each period
- Geo-referenced information on navigable rivers (ANTAQ)

Hand-coded river ports operating in each period


- Convert transportation network into graph multi-modal, restricted access, trans-shipment costs
- Assign **cost** of traversing each pixel as in Araujo et al. (2020)
- Compute (unit-free) transportation costs between locations using Dijkstra (1959)'s algorithm
- Use freight information to obtain iceberg costs

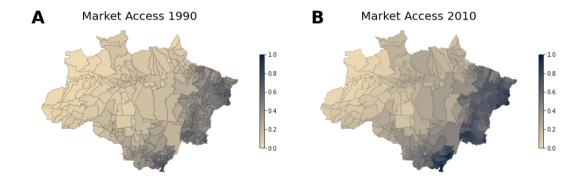
 $cost_{odt} = \alpha + \beta cost_graph_{odt} + \epsilon_{odt}$


- Convert transportation network into graph multi-modal, restricted access, trans-shipment costs
- Assign **cost** of traversing each pixel as in Araujo et al. (2020)
- Compute (unit-free) transportation costs between locations using Dijkstra (1959)'s algorithm
- Use freight information to obtain iceberg costs

 $cost_{odt} = \alpha + \beta cost_graph_{odt} + \epsilon_{odt}$

- Convert transportation network into graph multi-modal, restricted access, trans-shipment costs
- Assign **cost** of traversing each pixel as in Araujo et al. (2020)
- Compute (unit-free) transportation costs between locations using Dijkstra (1959)'s algorithm
- Use freight information to obtain iceberg costs

 $cost_{odt} = \alpha + \beta cost_graph_{odt} + \epsilon_{odt}$

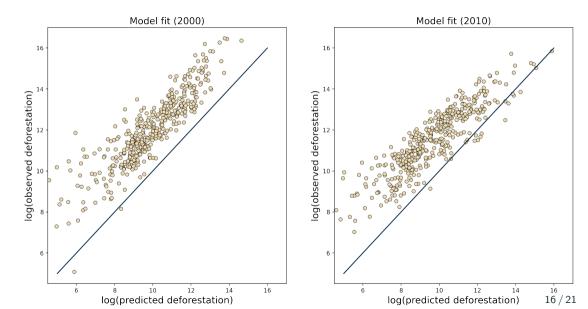


- Convert transportation network into graph multi-modal, restricted access, trans-shipment costs
- Assign **cost** of traversing each pixel as in Araujo et al. (2020)
- Compute (unit-free) transportation costs between locations using Dijkstra (1959)'s algorithm
- Use freight information to obtain iceberg costs

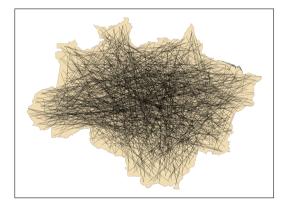
 $cost_{odt} = \alpha + \beta cost_graph_{odt} + \epsilon_{odt}$

Market Access

Combine τ_{odt} with data on population N_{dt} and trade elasticity ($\theta = 8.2$) to compute market access


Results

Market Access and Deforestation

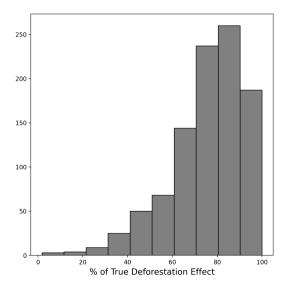

$$\log y_{o,t} = \alpha + \beta \log MA_{o,t_{I}} + \phi_{t}X_{o} + \gamma_{o} + \gamma_{s,t} + \epsilon_{o,t}$$

	log (Deforestation)					
log(Market Access)	0.45***	0.51***	0.47***	0.47***	0.52***	0.49***
	(0.13)	(0.13)	(0.13)	(0.13)	(0.13)	(0.13)
R^2 (within)	0.16	0.16	0.17	0.16	0.16	0.17
Observations	1,278	1,278	1,278	1,278	1,278	1,278
		First s	tage: log	(Market A	(ccess)	
log(Market Access, $d = 400$ km)				0.95***	0.95***	0.95***
				(0.002)	(0.002)	(0.002)
F Statistic				87,994	94,216	94,346
Observations				1,278	1,278	1278

Model predicts deforestation remarkably well

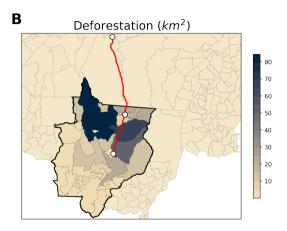


Indirect effects are important!


- Simulate 1,000 random roads + simulate its effects on deforestation
- Simulate effects using DID design (Asher et al., 2020)
- DID underestimate effects by 25%

Indirect effects are important!

- Simulate 1,000 random roads + simulate its effects on deforestation
- Simulate effects using DID design (Asher et al., 2020)
- DID underestimate effects by 25%


Indirect effects are important!

- Simulate 1,000 random roads + simulate its effects on deforestation
- Simulate effects using DID design (Asher et al., 2020)
- DID underestimate effects by 25%

Ferrogrão railroad

More in the paper

- Elasticity of land supply
 - 1.20-1.36 for frontier land (\approx (Gouel and Laborde, 2018; Pellegrina and Sotelo, 2021; Dominguez-lino, 2021))
 - 0.17-0.26 overall (> Roberts and Schlenker (2013))
- Extensions
 - Dynamics, multiple sectors, correlated shocks \rightarrow possibly stronger effects
- Importance of heterogeneity in land types
 - Model with one type of land does not predict heterogeneous responses across municipalities Model w/ one type of land
 - 5× more deforestation for Ferrogrão railroad

Conclusion

Conclusion

Recap:

- Inter-regional trade model connecting deforestation and market access
- \uparrow market access, \uparrow deforestation (elasticity \approx 0.5)
- Predicts deforestation well, indirect effects are important
- Framework for evaluating the effects of individual projects

Implications:

- 1. Transportation infrastructure is major driver of deforestation in the Amazon
- 2. Interaction between types of land key to understand land use dynamics in the region
- 3. Investments in transportation infrastructure have effects beyond their immediate surroundings
 - Project selection, licensing procedures etc. should consider this explicitly

THANKS!

https://arthurbraganca7.github.io/

a a morimbragan ca @worldbank.org

Robustness: Other Instruments

	$d = 400 \mathrm{km}$	Out-of-state	Fixed pop.	Dom. market				
	log (Deforestation)							
log(Market Access)	0.49***	0.48***	0.46***	0.52***				
	(0.13)	(0.13)	(0.13)	(0.14)				
Observations	1,278	1,278	1,278	1,278				
	First stage: log(Market Access)							
log(Alt. Market Access)	0.95***	0.95***	1.00***	0.88***				
	(0.01)	(0.01)	(0.01)	(0.01)				
F Statistic	94,346	132,155	54,860	2,815				
Observations	1,278	1,278	1,278	1,278				

Robustness: Controls for Local Infrastructure

	log (Deforestation)					
log(Market Access)	0.47***	0.5***	0.47***	0.47***	0.49***	0.46***
	(0.13)	(0.13)	(0.14)	(0.13)	(0.13)	(0.13)
Observations	1,278	1,278	1,278	1,278	1,278	1,278
	First stage: log(Market Access)					
$\log(Market Access, d = 400 km)$	0.95***	0.95***	0.95***	0.95***	0.95***	0.95***
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
F Statistic	99,956	103,394	102,706	98,707	102,782	102,116

Robustness: Trade Elasticity

log(Market Access)	log (Deforestation)						
	0.47***	0.5***	0.47***	0.47***	0.49***	0.46***	
	(0.13)	(0.13)	(0.14)	(0.13)	(0.13)	(0.13)	
Observations	1,278	1,278	1,278	1,278	1,278	1,278	
	First stage: log(Market Access)						
log(Market Access, $d=400$ km)	0.95***	0.95***	0.95***	0.95***	0.95***	0.95***	
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	
F Statistic	99,956	103,394	102,706	98,707	102,782	102,116	

▶ Back

Robustness: Domestic Market Access

	log (Deforestation)					
log(Market Access)	0.43***	0.49***	0.45***	0.46***		
	(0.11)	(0.12)	(0.12)	(0.12)		
$R^2(within)$	0.16	0.16	0.17	0.17		
Observations	1,278	1,278	1,278	1,278		
	First stage: log(Market Access)					
$\log(Market Access, d = 400 km)$				0.90***		
				(0.004)		
F Statistic				22,078		
Observations				1,278		

	area	\sqrt{area}	None	None
log(Market Access)	0.47***	0.60***	0.86***	0.69***
	(0.13)	(0.16)	(0.20)	(0.22)
Area $ imes$ log(Market Access)				0.01**
				(0.006)
$R^2(within)$	0.17	0.17	0.17	0.17
Observations	1,278	1,278	1,278	1,278

Robustness: One type of land

	log (Deforestation)						
log(Market Access)	0.17***	0.19***	0.18***	0.17***	0.19***	0.18***	
	(0.06)	(0.06)	(0.05)	(0.06)	(0.06)	(0.06)	
	First stage: log(Market Access)						
log(Market Access, $d=400$ km)				0.96***	0.96***	0.96***	
				(0.002)	(0.002)	(0.002)	
F Statistic				128,250	130,266	131,612	
Observations	1,278	1,278	1,278	1,278	1,278	1278	

▶ Back