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Abstract

How will future climate change affect rural economies like sub-Saharan Africa
(SSA) in terms of migration and welfare losses? How can policy enhance SSA’s
capacity to adapt to this process? I answer these questions with a quantitative
framework that, coupled with rich spatial data and forecasts for the future, es-
timates millions of climate migrants and sizeable and unequal welfare losses in
SSA. Investigating migration and trade policies as mitigating tools, I find a trade-
off associated with the former: reducing SSA migration barriers to the European
Union (EU) standards eliminates aggregate welfare losses at the cost of more cli-
mate migration and high regional inequality. Reducing tariffs to the EU levels
attenuates this cost.
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1 Introduction

One of the most concerning potential consequences of climate change is population
displacement, recently coined as the Great Climate Migration (Lustgarten, 2020). Sub-
sistence rural economies, like the sub-Saharan African (SSA henceforth) countries, lie
at the center of this issue. They are agriculture-dependent economies whose popu-
lations are expected to increase remarkably during the next decades (United Nations
and Social Affairs, 2019). Understanding how these rural economies would adjust to
a climate-changing world, with potentially different crop yields, is crucial for identi-
tying how this growing population will reallocate geographically.

Assessing the potential decisions of SSA economic agents when adapting to cli-
mate change is challenging. Changing agricultural yields could lead farmers to switch
production towards alternative crops, yet remaining in the agricultural sector. Alter-
natively, they could sort out of agriculture, potentially moving geographically. Trade
frictions would determine how much specialization between agriculture and non-
agriculture is feasible. Migration barriers would discipline the capacity of factors
to reallocate geographically, potentially limiting sectoral reallocation. Understand-
ing how these forces (production switching, trade, and migration) respond to climate
change is key to evaluating its impact on the economy:.

In this paper, I develop a spatial model that accounts for these forces and can be
used to quantify how their response to climate change translates into migration and
welfare losses. I link the model to a rich, high-resolution spatial dataset that I assem-
ble, covering 42 countries of SSA. By simulating it for a future scenario by the end
of the century, I estimate the aggregate and distributional impacts of climate change
in terms of migration flows, welfare losses, and sectoral and spatial reallocation of
production. I also show that trade and migration are important for adaptation, and
investigate the mitigating capacity of real-world trade and migration policies.

I begin my analysis with three empirical facts on SSA’s exposure to future changes
in the climate and the margins and frictions for economic adaptation. The first doc-
uments that the expected impacts in SSA agriculture will be heterogeneous across
space and, within locations, heterogeneous across crops. Hence, local producers
could respond to this uneven shock by switching production across crops and sec-
tors. The second fact argues that trade barriers would limit this margin, documenting
a weaker degree of sectoral specialization in trade than specialization in production
across countries in the SSA economy. Then, I establish a third, novel fact on migration
as another margin, showing that past changes in the climate positively correlate with
internal and international migration flows in the past decades in SSA, though limited
by geographical mobility barriers.



Informed by this evidence, I develop a multi-sector spatial model that accommo-
dates these mechanisms and frictions in general equilibrium. In the model, trade
and migration between locations are costly. In each location, farmers produce goods
from multiple agricultural sectors (crops) and firms produce non-agricultural goods.
Differences in sectoral total factor productivities and market access across locations
generate trade, shaping the spatial pattern of sectoral specialization. Relative sectoral
prices and real income determine sectoral expenditure shares, generating endogenous
structural transformation through substitution and income effects.!

My framework takes the perspective of subnational locations, so that trade and mi-
gration happen both within and across countries in SSA.? The intensity of the spatial
frictions depends primarily on the distance between locations over the transportation
network. However, they are also determined by country-level institutional factors.
In particular, frictions for international trade are subject to tariffs. Likewise, interna-
tional migration is subject to an additional mobility cost related to barriers to foreign
migrants at the destination country. Therefore, I map my setting into real-world trade
and migration policies, which allows me to investigate their role on the resulting
climate change effects and the efficiency of alternative policy schemes.

To quantify the model, I assemble a high-resolution spatial dataset on, among oth-
ers, population, transportation infrastructure, international trade, crop prices, internal
and international migration, and agricultural production and suitability in SSA. Fol-
lowing Costinot et al. (2016), I model climate change as a shock to the suitability for
growing crops. In practice, I draw on the GAEZ (IIASA and FAO, 2012) estimates of
crop-specific potential yields for several grain crops in recent, past, and future (under
IPCC’s business-as-usual scenario for climate change) periods. These potential yields
reflect only local natural characteristics (e.g. topographic and climatic) and thus pro-
vide a measure of geographical natural advantages for growing a specific crop.>*

I link the data to my model in three steps. First, I use the potential yields for
2000 as the fundamental productivity of crops. Second, I use transportation data to
build an optimal trade network between all location pairs in SSA. Third, I quantify
the remaining fundamentals and parameters, like sectoral productivities, amenities,

migration costs, and trade frictions, by embedding standard quantification methods

T model preferences over agricultural and non-agricultural goods as nonhomothetic and assume
the former to be a necessity (subsistence) good. Thus, my model features key aspects of structural
change; in particular a downward sloping demand for agricultural goods with respect to income.

21 do not consider migration and trade with the rest of the world in my baseline because about 75%
of international migrants from SSA by the early 21st century moved within the continent. However, 1
extend my setting by adding trade and migration with the rest of the world in Section 6.4.

3Hereafter, I refer to these potential yields as fundamental productivities/advantages indistinctly.

“To focus on subsistence agriculture, I consider only the main staple crops produced and consumed
in the region (cassava, maize, millet, rice, sorghum, and wheat; see Table D.2). They account for 80%
of the agricultural production, as of 2000, and 50% of the caloric intake in SSA (Porteous, 2019).



for spatial models into a GMM estimation. The richness of my data is a crucial input
in this step. For instance, I can carefully separate the role of tariffs and geographical
distances when determining trade frictions by exploiting, respectively, variation from
international trade flows and the spatial distribution of prices.” The method I design
for that is innovative relative to standard approaches, as it requires data on local prices
rather than on spatial price wedges (as in Donaldson, 2018).

With the quantified model in hand, I perform a backcasting exercise that validates
it. Using past crop suitabilities, I simulate the model back in time for 1975 and contrast
the results with observable data. The model predicts well the grid cell-level changes in
population between 2000 and 1975, reassuring its capacity to provide similar numbers
for the future. An additional overidentification test shows that the model identifies
closely the degree of specialization in agriculture across countries.

My main counterfactual exercise consists of simulating a climate-changed SSA by
the end of the century. I draw the estimates for crop productivities in 2080 with
climate change and simulate the model with them, keeping all other fundamentals
unchanged.® The results show that climate change displaces about 14 million indi-
viduals in SSA. Most of the climate migrants move out of the Western Sahel and DR
Congo, regions severely hit by climate change, into nearby countries like South Africa
or Tanzania. Damaged countries also experience large internal migration flows, and
overall the population in country capitals increases. Importantly, the welfare effects,
measured as changes in real income per capita, are small in aggregate terms.” How-
ever, they are very heterogeneous across space: the bottom and top deciles of the
welfare changes across countries are -10 and 3 percent, respectively, and some coun-
tries experience losses of up to 27 percent.

Analogously, climate change does not affect SSA aggregate sectoral employment,
but does so in distributional terms. The median country increases agricultural em-
ployment by about one percentage point, and the distribution of sectoral employment
changes is fairly skewed. This happens because I model crops to be subsistence goods.
Thus, affected economies respond to the reduced crop yields by allocating more labor
into that sector. Nonetheless, this effect is spatially heterogeneous, and the direction
of sectoral specialization roughly follows the relative changes in sectoral productivity
(i.e. affected countries specialize out of agriculture, and the opposite for the least
damaged). Interestingly, however, the resulting welfare effects across countries go in

several directions and depend on a rich interaction between the forces driving migra-

5 Analogously, I carefully separate the role of geographical distances and national policies against
migrants when determining migration costs (with, respectively, internal and international migration).

®These simulations also account for the estimated future population growth with fertility rates taken
exogenously from data by demographers. I endogenize it as of robustness in Section 6.4.

7Section 6.3 shows the qualitative equivalence of the results if using alternative welfare measures.



tion, sectoral specialization, and trade.

I highlight the role of these forces with additional simulations centered on the main
mechanisms of my framework. I start with bilateral migration frictions: eliminating
them in the counterfactuals increases total climate migration to 87 million individu-
als, remarkably close to estimates from studies that disregard these barriers (e.g., 90
million from Rigaud et al., 2018). Moreover, welfare losses reverse in this friction-
less setting (aggregate welfare increases by 8 percent). That happens because lower
mobility barriers boost the push-aspect of climate change, reallocating labor out of
unproductive rural regions and permitting a welfare-improving process of structural
transformation. Importantly, these aggregate gains hide an underlying cost: the dis-
tribution of welfare changes across countries remains remarkably wide and skewed.
Thus, reducing mobility frictions as a policy poses a trade-off of reverting aggregate
losses at the expense of more climate migration and high regional inequality.

Next, I analogously investigate the role of two additional mechanisms: trade and
crop-switching. For the former, I find that trade openness reduces migration and the
inequality in the welfare changes by providing more room for sectoral specialization.
For the latter, I show that the capacity of producers to reallocate production across
crops is a crucial margin of adaptation for SSA farmers. Ignoring this margin overes-
timates the productivity and welfare losses of climate change by not considering that
crop yields are differently affected within locations.

I close my investigation with a policy experiment that assesses the potential miti-
gating role of real-world migration and trade policies. I simulate a counterfactual sce-
nario where migration and trade frictions in SSA drop to the levels of the European
Union (EU). Doing so requires quantifying EU tariffs and country barriers to foreign-
ers within the structure of the model (and using the result in the SSA simulations).®
Adopting the migration policy of the EU eliminates the aggregate welfare losses in
SSA at the cost of more climate migration and high regional inequality. However,
setting tariffs to EU levels on top of the migration policy attenuates that. In particular,
the policy mix increases the efficiency of the allocation of factors across sectors and
locations, which reduces welfare losses both in aggregate and distributional terms.
This last result has important policy implications: by combining both tools, SSA poli-
cymakers would take advantage of the changes in the climate and allow the economy
to structurally change, through trade and migration, in a less unequal manner.

This paper contributes to the current academic and policy research on future cli-
mate migration. Several policy institutions produced results to guide policymakers
in this matter, such as the Pulitzer Center (Lustgarten, 2020) and the World Bank

8More specifically, I build a likewise rich spatial dataset for the EU in 2000. I then link it to my
model (with the same quantification procedure), retrieve the EU policy-related parameters (tariffs and
country barriers to foreigners), and use them in the SSA simulations. See section 6.3 for details.
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(Rigaud et al., 2018). They use partial equilibrium frameworks that disregard several
mechanisms of my framework, like migration barriers. Other studies are Benveniste
et al. (2020) and Burzynski et al. (2022), who model migration responses to global
warming and coastal flooding. I complement these studies by modeling the spatial
links behind the adaptation decisions and providing policy-relevant results that are
informative about the reach and interplay of migration and trade policies. Relatedly,
by accounting for the general equilibrium forces driving future climate migration, I
add to the rich empirical literature on the causal link between past climate shocks,
migration, and urbanization in developing rural economies.’

I also contribute to the general equilibrium literature on the welfare benefits of
reducing migration barriers in rural economies (Bryan et al.,, 2014; Pellegrina and
Sotelo, 2021; Meghir et al., 2021; Lagakos et al., 2023) by investigating these gains
in the context of adaptation to climate change. Moreover, my central finding on the
aggregate versus inequality welfare trade-off associated with migration policy speaks
to studies that infer heterogeneous effects of similar policies in developing economies
(Bryan and Morten, 2019; Morten and Oliveira, 2018; Imbert et al., 2023). Besides,
my findings on the attenuating role of trade policy (and the innovative method I
propose to quantify trade frictions) enrich a large literature on the importance of
market integration for development (Atkin and Donaldson, 2015; Donaldson, 2018;
Asturias et al., 2019; Sotelo, 2020; Pellegrina, 2022; Nagy, 2023).

Lastly, I contribute to a literature that studies the consequences of climate change
with quantitative spatial models (Redding and Rossi-Hansberg, 2017).1° My contri-
bution is to incorporate, into a unified framework, a threefold set of features that are
crucial to model climate migration in rural developing economies. First, by allowing
for labor mobility within and across countries in Costinot et al. (2016)’s framework,
I account for the cross-crop heterogeneity of the climate shock and show that this
dimension matters for understanding the migration and welfare consequences of cli-
mate change in SSA. Second, I allow for the subsistence aspect of agriculture to limit
structural change as adaptation, as in Nath (2022) and Cruz (2021), but show that mi-
gration is a margin that attenuates this issue. Third, I account for realistic trade and
migration policies and show how they interact with sectoral specialization, structural
change, and the aggregate and distributional welfare effects of climate change.!!

9These studies empirically estimate the causal link between past weather shocks and migration (e.g.,
Baez et al., 2017; Groger and Zylberberg, 2016; Cai et al., 2016; Albert et al., 2021) and urbanization
(e.g., Barrios et al., 2006; Castells-Quintana et al., 2021; Henderson et al., 2017) in SSA, Asia, and Latin
America. Their results are informative about the strength of short-term climate shocks as a determinant
of migration, but cannot be extrapolated for the understanding of future climate migration.

10This literature focuses on, among others, global warming (Desmet and Rossi-Hansberg, 2015, 2023;
Conte et al., 2021, 2022; Cruz and Rossi-Hansberg, 2023; Bilal and Rossi-Hansberg, 2023; Rudik et al.,
2021) and coastal flooding (Desmet et al., 2021; Balboni, 2021; Hsiao, 2022).

HNaturally, there are aspects of this literature that my paper does not feature. One is endogenous cli-
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The paper is organized as follows. Section 2 describes the main data sources, and
Section 3 documents a number of empirical facts related to the potential impact of cli-
mate change on SSA economy. Section 4 presents the theoretical framework. Section 5
details quantification of the model, and Section 6 the results of the climate change
counterfactuals, policy experiments, and robustness checks. Section 7 concludes.

2 Data

I collect and aggregate several sources of geographical data within 1° x 1° grid cells
(about 100 km? at the equator), the empirical unit of observation. The set of cells
covering 42 countries of SSA contains 2,007 cells. The data sources, collection, and
aggregation follow below; see Appendix A for details.

GDP. Grid cell-level data on GDP per capita in US$ PPP (2000) comes from the Global
Gridded Geographically Based Economic Data v4 (G-Econ, Nordhaus et al., 2006).

Population. The G-Econ database also provides the population count at the grid cell-
level for 1990 and 2000, which is complemented with grid cell-level 1975 population
data from the Global Human Settlement Project (GHSP, Florczyk et al., 2019). Finally,
country-level projections for the future population at the end of the century were
taken from United Nations and Social Affairs (2019).

Agricultural suitability. I construct a spatial and time-varying dataset of crop-specific
suitabilities using the Food and Agriculture Organization’s Global Agro-Ecological
Zones database (GAEZ, IIASA and FAO, 2012). This data is generated by an agro-
nomic model that combines geographic characteristics (e.g. soil, elevation, etc.) with
yearly climatic conditions to produce high-resolution estimates of potential yields for
different crops and periods.'?> 1 collect and aggregate the potential yields for the 6
crops of interest for 1975, 2000, and 2080.'3

Agricultural production. Grid cell-level crop production comes from two sources:
grid cell-level production data (in tonnes) for 2000 from GAEZ and country-level crop
production (in current US$) for 2000-2010 from FAO-STAT. I convert current US$ to
US$ PPP using their ratio on the G-Econ data.

Crop prices. I retrieve spatially disaggregated crop price data from the Vulnerabil-
ity Assessment and Mapping program of the World Food Programme (WFP-VAM),

mate, which is reasonable given the small SSA contribution to global emissions. Another is dynamics,
whose absence is motivated by the static feature of the GAEZ data. Section 6.4 elaborates on that.
12These potential yields refer to the yield that a certain cell would obtain, on average, if its surface
was fully devoted to a specific crop.
13The 2080 yields refer to a climate-changed world under the business-as-usual scenario RCP 8.5.



Figure 1: Spatial coverage of crop prices and internal (within-country) migration data

Panel A: Location of WFP markets. Panel B: Subnational regions with migration data.
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Notes: Panel A shows the locations (markets) with crop price data from the WFP-VAM project. Panel
B shows the subnational locations with within-country migration data from IPUMS (2020).

which has been monitoring crop prices in more than 900 markets across SSA since the
early 1990s. I focus on prices for maize, millet, sorghum, and rice — the crops with
higher temporal and spatial coverage. Figure 1 Panel A shows the wide spatial cover-
age within and across countries of this data, as well as a rich within-market coverage
of prices for different crops (i.e. many markets with data for more than one crop).

Transportation network. I build up a network connecting all grid cells of SSA by
combining the Global Roads Open Access Data Set (gROADS, CIESIN, 2013) with the
friction surface from the Accessibility to Cities project (Weiss et al., 2018).

Bilateral trade. I extract bilateral crop trade flows (in current US$, scaled to PPP
as above) between SSA country pairs from the International Trade and Production
Database (ITPD-E, Borchert et al., 2021). It is a benchmark source of trade data due to
its large geographical, sectoral, and temporal (2000 to 2016) coverage.

Internal and international migration flows. I obtain bilateral gross migration flows
between SSA countries from Abel and Cohen (2019)’s database (a comprehensive
source of migration data that covers about 200 countries and 25 years). Moreover,
I built a matrix of internal (i.e. within countries) migration at the grid cell pair-level
from census data (from IPUMS, 2020) by aggregating individual-level migration data
at the subnational level for 24 countries and 40 years (since the 1970s to the early 21st
century). Figure 1 Panel B shows the high coverage and granularity of this data, with
migration between regional (ADM1) and provincial (ADM2) units.



3 Motivating facts

This section documents three facts about the potential impact of climate change in
SSA. It establishes that (i) these effects are expected to be strong and heterogeneous
and, as such, (ii) potentially determinant in the future organization of the SSA econ-
omy and (iii) future migration flows. Overall, these facts provide empirical support

for the channels I embed in the model.

Fact 1: Climate change is expected to bring about substantial and spatially hetero-
geneous changes in agricultural suitability in SSA.

I use the GAEZ estimates of agro-climatic potential yields for 2000 and 2080 to show
the expected degree of severity and heterogeneity in climate change’s impact.!* 1
define AA¥ as the changes in the yields of crop k (in tonnes/ha) in location (i.e. grid
cell) i between the two periods, and AA; as the average change within locations.

Panel A of Figure 2 illustrates the high level of heterogeneity in the average climate
change shock to agricultural yields. In terms of levels, several locations will become
less suitable for agriculture, with average yields declining by 3 tonnes/ha (50 percent
of average yields) or more. However, other locations will become more suitable and
to a similar extent. This finding contradicts a general view of climate change as a
spatially homogeneous shock.

To illustrate the heterogeneity across crops, Panel B of Figure 2 documents the
dispersion of climate change effects at the cell level (in standard deviations of AAF).
The changes in yields are not homogenous across crops, differentially shifting the
relative ranking of crop suitabilities within cells. Hence, climate change will affect
agricultural comparative advantages heterogeneously across both space and crops.

Thus, adjusting crop choices is a potential coping margin for affected farmers in
SSA. However, the extent to which such Ricardian production adjustments can take
place in SSA depends on the strength of these natural comparative advantages in
shaping effective agricultural production. The next empirical fact provides evidence
that such a mechanism indeed exists and emphasizes the importance of embedding it

in my theoretical framework.

Fact 2: Natural crop suitability explains to a large degree the patterns of crop spe-
cialization across SSA, but not as much the trade patterns between countries.

Figure 3 Panel A documents a positive correlation between observed production and
the GAEZ yields in 2000. It plots the linear fit of effective crop production on aver-

age crop yields at the country level, both in logs and net of crop and country fixed

14The 2080 GAEZ forecasts are calculated assuming a hypothetical scenario for the future evolution
of the world’s climate. Appendix A describes how I chose the scenario from which to draw the data in
order that the results refer to the Representative Concentration Pathway (RCP) 8.5.
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Figure 2: Expected impact of climate change on average crop yields (left) and the
standard deviation of crop-yield changes (right) in SSA between 2000 and 2080

Panel A: Change in average crop suitability. Panel B: Location-level standard deviation.
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Notes: Panel A shows the level changes in average potential yields between 2000 and 2080. Panel
B shows the standard deviation of the crop-level yield changes within cells. See Section 2 and
Appendix A for details, and Figure B.5 for Panel A in relative changes.

effects. The strong, positive correlation (elasticity of 0.73) is evidence of specialization
in production, with countries producing the crops that they are more suitable for."
Furthermore, Panel A documents a weaker degree of specialization in trade: the
slope of bilateral trade on exporter-importer relative yields is about 40 percent lower.'®
Notably, this pattern remains if controlling for the distance between exporter-importer
capitals (a component of trade costs; see Appendix D.1), suggesting that other resis-
tance elements (e.g., tariffs) could be the reason for the weaker specialization in trade.
Hence, to align with these empirical patterns, my model will take the perspective
of subnational locations (and countries) that specialize in (and trade, but costly) crops
based on comparative advantage. As such, it will consider how climate change, in
general equilibrium, will reshuffle production and trade in SSA in the next decades.

Fact 3: Changes in crop suitability positively correlate with past internal and inter-
national migration flows in SSA.

Panels B and C of Figure 3 show that changes in crop suitabilities between 1975 and
2000 explain migration choices, within and across countries, in SSA. For that, they

plot the linear fit of bilateral migration flows on the change in the relative yields

15Appendix D.1 discusses more formally these correlations, documents the associated regression
results, and documents additional facts, e.g., evidence for within-country specialization in production.

16The trade slope refers to the linear fit of bilateral crop trade on exporter-importer relative crop
yields, in logs, and net of importer-exporter and crop fixed effects.
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Figure 3: Comparative advantage and the organization of the SSA economy: relation-
ship between crop yields (changes) and effective production, trade, and migration

Panel A: Country-level crop Panel B: Bilateral internal Panel C: Bilateral international
production and trade (in logs). migration flows. migration flows.
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Notes: Panel A plots, with the solid line, the correlation between GAEZ potential yields and country-
level effective production from FAOSTAT. The dashed line plots the correlation between country-pair
relative GAEZ potential yields and bilateral trade flows from ITPD-E. Panel B plots the correlation
between internal (within-country) migration and changes in relative potential yields over time (and if
controlling for bilateral distances). Panel C plots analogous correlations to B but for international mi-
gration (between countries). All the correlations shown are net of fixed effects that make cross-country
(and cross-crop) relationships comparable; see appendix D.1 for details.

between subnational locations (i.e., regions or provinces) or countries.!” A positive
relationship is evidence of relative yields as a push factor of migration over time, with
larger bilateral flows for the pairs whose destination-origin relative yields increased.

This is the case for both internal and international migration. Moreover, this rela-
tionship is stronger for location pairs (subnational regions or countries) that are ge-
ographically closer: controlling for bilateral distances increases the estimated slopes
for both types of migration flows. This shows that migration costs, like geographi-
cal distance, limited the capacity of agents migrating to locations that became rela-
tively better off in the past decades. Hence, my model will incorporate these mobility
barriers in general equilibrium, limiting the capacity of migration as an adaptation

response to future climate change.

7The relative yield changes refer to the percentual changes, between 2000 and 1975, in the relative
average yields between location pairs. Moreover, the migration flows refer to thousands of migrants
between origin and destination per thousand population at the origin in 1975 (which is equivalent to
controlling for the initial population at origin). See Appendix D.1 for details.
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4 Model

This section presents a static quantitative spatial model that quantifies the general
equilibrium impacts of future climate change. It provides a tractable framework to ac-
count for the role of geographical heterogeneity along several dimensions (i.e. sectoral
productivities, market access, and migration barriers, among others) in determining

the spatial distribution of economic activity and population.®

4.1 Environment

The economy S is composed by N locations, denoted by i, j, or s. Each i belongs to a
country c(i) € {1,...,C}, has a surface H; € {H,};cs = H, and is initially populated by
LY € {LY};cs = L of workers who supply their labor inelastically. There are K sectors
k € {1,..,K} in the economy: K — 1 crops and a non-agricultural composite K sector.
Locations can produce a horizontally differentiated variety w of each sector’s goods.
Each location has a sector-specific fundamental productivity A¥ € A = {Al, ..., AK}
that partially drives the degree of sectoral comparative advantage across space. More-
over, workers residing in i enjoy an amenity value u; € {u;}ics = U.

Goods and labor units are mobile in S, subject to frictions. In particular, 7 =
{Tij}i/jes is the bilateral trade friction matrix where 7; = 7;; > 1 is the iceberg cost
of trading betwen i and j. Frictions migration depend on an analogous mobility cost
m;j € M and on an idiosyncratic taste shock to the migration choices of agents.

The geography of the economy is G(S) = {L,H, A, U, T, M}: the set of spatial
fundamentals that interact with the economic forces of the economy and determine

the spatial distribution of the economic activity, explained next.

Technology and Market Structure. In every i, a continuum of firms produces an w
variety of sector k goods with labor L¥(w) and land H¥(w) in:
7¥(w) = 2¥(w) x L (w)* HF (w)! =%, where (1)

i

z¥(w) is a Hicks-neutral productivity shifter that firms draw independently from:

— Tk (BkAK

f(w) ~ Ff(w) = 704, @
ks . . . . , ..

F’s shape parameter {; determines the dispersion of firms’ productivity draws (hence,

their ex-post heterogeneity) around the scale parameter (b¥A¥). Thus, they depend

on Ai.‘ (i.e., i’s fundamental characteristics) and bi.‘, a location-sector efficiency shifter

that represents other determinants of firms” productivity (e.g. technology).

I18Refer to Appendix B for further details and derivations of the model.
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The output can be locally consumed or traded with other locations in a perfectly
competitive, full information framework. Thus, the final price of the sector k variety
w produced in i and shipped to j is:

pi.‘]-(w) = (Ekw?"rilfa"/zf(w» X Tjj, (3)

where ¢* is a constant and w; and r; are factor prices (wages and land rents).

Preferences. Each location i is initially populated by a continuum of workers who
decide where to live and how much to consume. In particular, a worker n initially
living in location i who decides to migrate to j enjoys

Ui]'(n) = C] X Tﬁi;l X 8]'(11), 4)
where C; is the utility obtained from consumption in j, 7;; is the mobility cost of

migrating to j, and ¢j(n) is a destination taste shock that disciplines workers’ (ex-

post) heterogeneous taste with respect to their preferred destination.

Consumption choice. Workers in a location j decide how much to consume of all
possible w varieties from all K sectors goods, c;.‘(w). Their preferences feature love for

varieties, which is modeled using a sectoral tier with CES 7, > 1:

ck = ( / C;F(w)”"vkdw) e (5)

Workers at j enjoy per capita income v; = w; + r;H;/L;. Following Eaton and Kortum
(2002), the share of j’s spending on sector k goods is:

_ =&
AL = bEAT (F"c"‘wf‘kr} M1/ P}‘) *, where (6)
L —1/&
P}‘ — Tk (Z bk AK (Ekwf"‘ril_akﬂj) k) )
ieS

is the price index of sector k at j. Thus, workers expend a larger share on the cheapest
suppliers (i.e., with the lowest price vis-a-vis sectoral price index P]k). Cx determines
the extent to which this occurs, being the sectoral trade elasticity in the economy.

Worker choices across the K — 1 crops also feature love for varieties. All crop C;.‘
composites are aggregated into the following agricultural CES tier:

o (56"

k#£K
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Ya > 1 is the CES between crops which drives their degree of substitutability. Hence,
j’'s share of expenditure on crop k relative to total crop expenditure is:

Bk = (Pk/P)'™7, where 9)
1
T—y, \ 72
1?:<g%uﬁ 7) (10)

is the price index of the aggregate agricultural sector a. Therefore, workers substitute
crops based on their relative prices. Larger values of 7, imply more consumption of
the locally cheapest crop and a stronger degree of specialization in crop consumption
across locations.

Finally, the consumption choice between agricultural and non-agricultural goods
is modeled with a further nonhomothetic CES tier in the spirit of Comin et al. (2021).

In particular, the utility from consuming goods, C;, is implicitly determined from:

3 (Qk>1/a (C]')ek/a (CJ") (c-1)/c _ a1

ke{a,K}

where ¢ > 0 is the CES between the a and K aggregate sectors, €, is their nonho-
mothetic elasticity of substitution, and () are sectoral preference shifters. Ultility
maximization implies that total consumption equals real income, C; = v;/P;, and that

aggregate price indexes and expenditure shares at j are respectively determined as:

1-0 (1— T-0
1-0\ & &0
_ k k k k 1— €
p=| Y (Q () ) x (wot=o) , and (12)
ke{a,K}
uy = PfCf/v;
1-0 ex—(1—0)
= 0Fx (PE/) % (v;/P)) Vk € {a,K}. (13)
subs’c;t,ution nonhom&heticity

Equation (13) shows that workers’ choices between agricultural and non-agricultural
goods are more complex than within agriculture. The reasons are two: first, it con-
tains a substitution component analogous to eq. (9) that nevertheless permits a lower
degree of substitutability between sectors (o < 1). That makes it possible for changes
in sectoral expenditures to be relatively lower (in magnitude) than the changes in
relative prices. Second, it features a nonhomothetic component that maps changes
in real income onto changes in sectoral expenditure shares — essentially, an income
effect. The elasticities €, determine this relation: if €, < 1 — o, then sector k goods are
a necessity whose expenditure decreases with income(and the opposite if €, > 1 —0).
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Note that if €, = 1 — ¢ for all k, then the nonhomothetic component vanishes and
egs. (12) and (13) become isomorphic to egs. (9) and (10). 19

In equilibrium, ] ’s per capita demand for sector k goods produced in i is /\1] ]]/l j
for crops and AKX j uk i 0 for the K™ sector. Hence, the total bilateral expenditure Xij is:

k =k
=Y X Z AE ]yf’v]L —|—)\Z]y] oL

kek
i\ 1=7a a\ 1-o e—(1-0)
~& (P P: (7
- g et enm) (1) o () () e
k7K B Fj B
e pK 1-0 0. —(1-0)
+ b AK (TRewr ", /PF) ™ OF (%}) (Fj) ojLj- (14)

Location choice. Workers choose where to live in order to maximize utility. In partic-

ular, worker 7 initially living in i chooses a destination j in order to solve:

max Ujj(n) = (w;/Pj) x mgl x gj(n). (15)
Therefore, workers will prefer locations with higher real income, although subject to
the bilateral migration cost 7;; and the destination taste shock ¢; (). Formally, the
former is modeled as

mj; = mj; X mejy if c(i) # c(j), and m;; = m;j otherwise, (16)

where m;; and m o) = L. Thus, mobility costs depend on m;; (which accounts for

bilateral characterlgacs like distance) and potentially m,(;). The latter matters only if
the location choice requires workers to switch countries. Hence, it captures country-
specific characteristics of destination j in terms of national barriers to foreigners.

I assume that the taste shock is drawn independently from an extreme-value dis-

tribution with shape parameter 6 > 0 and scale parameter u;(L;/H;) F:
e; ~ Gj(z) = e 7 xulli/ H) (17)

The parameter 6 drives workers’ heterogeneity with respect to their location tastes
(and, to some extent, the dispersion forces in the economy). A higher 6 makes
agents more homogeneous and their location decisions more dependent on real in-

come v;/P;. That drives down the dispersion forces in the economy. In contrast,

19Such a demand structure is required in order to account for the necessity (subsistence) aspect of
agricultural goods when endogenizing sectoral shifts from agriculture to non-agriculture (i.e. structural
change). This is what Gollin et al. (2007) refer to as the food problem and what Nath (2022) shows to
be a limitation of structural change as a response to climate change. I discuss this further in Section 4.2.
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a lower 0 implies greater heterogeneity among agents who are more likely to draw
higher values of taste shocks for every location. In that case, dispersion forces in-
crease. Moreover, the scale parameter u;(L;/ H;)~P determines the average of the
preference draws; u; stands for the fundamental amenity of destination j; and f > 0
determines the extent to which population density diminishes quality of life.

Analogously to eq. (2), the distributional assumption on taste preferences allows
for a closed-form solution to the share of workers initially in i migrating to j:

(0j/ Py " (L Hy) =P
I; =P (Wj(v) > max{Ws(v)}s#]-) = — ' (18)
ES<Us/Ps) M us(Ls/Hs)i‘B
se
Therefore, the total number of workers that choose to live in destination 7 is:
J
Lj=Y IL;x LY. (19)

i€S

This is an intuitive result: locations with higher real income (v;/P;) and/or density-
adjusted amenities u;(L;/ H]-)_ﬁ will have a higher population in equilibrium. The
magnitude of this effect is partially driven by 6, which is the elasticity of the location
choice with respect to real income and to bilateral migration costs.

Spatial equilibrium. Given the geography G(S) and the exogenous parameters © =
{O%, 7k, Ya, €k, 2k, €k, 0,0, B}, a spatial equilibrium is a vector of factor prices and labor
allocations {wj, rj, Lj } jes such that egs. (7), (10), (12) to (14) and (19) hold, and markets
for goods clear. Formally, market clearing requires trade-balacing, such that each j’s

income equals total exports to and total imports from all locations i € S:?

i€S i€S

4.2 Illustration and discussion of the underlying mechanisms

I illustrate how changes in the fundamentals shape the geographical distribution of
economic activity and population by representing it as a line with a discrete number of
locations. By doing so, I emphasize the effect of the model’s underlying mechanisms
on the agent’s mobility decisions in response to a climate shock to the economy.

The locations i € {1,..,N} are distributed over a line and are homogeneous
with respect to amenities, efficiency shifters, and initial population (u; = u, bf.‘ =
b, and L? = | Vi, k). The economy is composed of two countries, where the ten left-

20 Appendix B.3 documents the non-linear system of 7 x N equations that characterize the spatial
equilibrium, the iterative algorithm used to solve it, and aspects related to its existence and uniqueness.
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most locations stand for country 1. I initially set K = 2, so that the agricultural a4
sector consists of one crop only. I assume that the distribution of sectoral fundamen-
tal productivities is increasing in the right-most locations and that every location is
more productive in the K™ sector. I also set bilateral trade and mobility frictions to be
proportional to the bilateral distances and make it costly to migrate to country 2. In
terms of preferences, I assume that the agricultural crop is a necessity good and the
opposite for the K sector. For simplicity, I disregard land #.*!

Panel A of Figure 4 plots the equilibrium distributions of {L¥} as dashed lines
(baseline). Overall, the economy produces more non-agricultural goods, which is the
most productive sector. In distributional terms, the rightmost locations in each coun-
try have a higher level of economic activity and a larger population. The discontinuity
at the country boundaries (i = 10) illustrates the role of country migration barriers (i.e.
my > 1). There is a higher population density on country 1’s side due to the inability
of workers to cross into country 2, where productivities and real wages are higher.

Subsequently, I simulate a climate shock by reducing country 1’s crop productiv-
ities even further. The result is shown in Panel A of Figure 4 using solid lines (CA).
Country 1 changes its patterns of sectoral specialization by increasing its relative em-
ployment in agriculture. This is driven by the necessity aspect of agricultural goods.
Climate change reduces crop productivity in country 1, which reacts by increasing
agricultural employment so to produce the needed quantity of crops. This reduces
real income in that country, increasing its share of expenditure on crops. Country 2,
if anything, gets benefitted. Its population and non-agricultural employment increase
due to the climate migrants from country 1.

This simple exercise illustrates the limitations of structural transformation as a
response to climate change. As rightly argued by Nath (2022), economies will switch
production out of affected sectors only if capable of importing subsistence goods from
unaffected regions. He refers to this as the food problem, inspired by previous studies
of structural change and development (Gollin et al., 2007; Herrendorf et al., 2014).
Panel B of Figure 4 provides further quantitative evidence of how this mechanism
works in my model. When facing lower trade frictions, country 1 switches production
out of agriculture, since it can now outsource crops from the nearest locations in
country 2 (which shifts its production towards agriculture).

The novelty of my framework lies in the addition of two dimensions that further
interact with the mentioned adaptation mechanisms. The first is migration barriers,
whose role is illustrated in Panel C of Figure 4 (the climate change scenario without

country migration barriers, i.e. m. = 1 for all c¢). The results are intuitive: instead

ZThat is, ax = 1 Vk, €, < 1 — 0 (and the opposite for k = K = 2), m; = 1, my = 1.5, 1; = m;j =
e™li=1l, and A;{ = a; X i, where T = 0.05 and a; > a7. See Appendix B.5 for details.
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Figure 4: Equilibrium values of {L}, L?},c5 for an economy represented on a line

Panel A: Migration barriers, sectoral specialization, Panel B: CA, the food problem, and
and CA. the role of trade frictions.
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Notes: Equilibrium labor allocations for the model described in Section 4.2. Panel A describes the
equilibrium of the baseline and climate change simulations (country 1 becomes less suitable for
crops). Panel B, C, and D plot the results of the climate change scenario with, respectively, lower trade
frictions (a reduction in T), no migration barriers between countries (. = 1 for all ¢) and multiple
crops (K = 3).

of reacting to the food problem, workers in country 1 migrate to country 2. Over-
all, workers enjoy higher real wages and spend lower income shares on agricultural
goods, making climate change less of a problem. Thus, migration can have a welfare-
improving role as a response to climate change. It permits individuals to move out
of unproductive rural regions, allowing for a more efficient sectoral spatial sorting of
workers. This echoes the insights obtained from research on spatial structural change
(Eckert and Peters, 2018) and on the gains from lowering migration barriers in rural
economies (Bryan and Morten, 2019; Pellegrina and Sotelo, 2021; Lagakos et al., 2023).

The second additional dimension is the multi-crop aspect of the agricultural sector.
Crops are partial substitutes as subsistence, and Section 3 shows that climate change
is expected to alter their yields heterogeneously within locations. Thus, a potential
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response of farmers in affected locations would be to switch production towards less-
affected crops. The role of this margin is shown in Panel D of Figure 4. Dashed
lines represent the outcomes of a simulation with two crops, where only crop 1 is
affected in country 1. As a result, locations in that country switch production towards
(unaffected) crop 2. This increases non-agricultural employment, real wages and wel-
fare. Country 2 remains qualitatively unaffected, and overall the economy is better
off relative to the one-crop scenario.

5 Bringing the model to the SSA data

I quantify the model to match SSA data by the early 21st century. To do so, I use a
mix of quantification methods that map ® and G (S) to observable features of SSA.
Tables 1 and 2 document the methods and sources used, and Section 5.5 the results of
overidentification tests that validate the calibrated model.??

5.1 Parameters from the literature

I draw the values for {#k, Va, €k, &k, Cx, 0,0, B} from the related literature. I set the
lower-tier CES as rx = 5.4 for crops and nx = 4 (as in Costinot et al., 2016; Desmet
et al., 2018, respectively), and the mid-tier CES as 7, = 2.5 as in Sotelo (2020). As
for the upper-tier nonhomothetic CES, I follow Comin et al. (2021) and set o = 0.26,
€, = 0.2, and eg = 1. Therefore, agricultural goods in my framework are a necessity,
as opposed to non-agricultural K goods. I obtain the factor shares ay = 0.39 and
ag = 0.58 from Fajgelbaum and Redding (2022) and the trade elasticities ¢ = 5.66
and ¢x = 6.63 from Pellegrina (2022). Finally, I set 6 = 3 and 8 = 0.32 following
Morten and Oliveira (2018) and Desmet et al. (2018), respectively.

5.2 Transportation and trade networks

I follow the related literature (e.g. Allen, 2014; Donaldson, 2018; Pellegrina, 2022) by

assuming that trade frictions are proportional to the travel distance between locations:
— . NG F
7;j = distance(i, j)° x T, (21)

where distance(i, j) is the shortest distance between the location pair (in kilometers)
and Tif- > 1is an additional tariff-like trade friction. That is, Ti’;? > 1 only if ¢(i) # c(j).

22In addition, Appendix B.6 describes the data used and the numerical algorithms implemented,
while Appendix B.8 discusses the implications of the parameter values drawn from the literature.
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Table 1: Preference and technology parameters borrowed from the related literature

Parameters Description Source

Panel A: Demand parameters

g =54 Lower-tier CES (k # K, crops) Costinot et al. (2016)

ng =4 Lower-tier CES (non-agriculture) Desmet et al. (2018)

Ya =25 Mid-tier CES (across crops) Sotelo (2020)

c =026 Upper-tier CES Comin et al. (2021)

€, =02 Non-homothetic CES (agriculture) Comin et al. (2021)

ex =1 Non-homothetic CES (non-agriculture) Comin et al. (2021)

Panel B: Supply parameters

¢ = 5.66 Sectoral trade elasticity (k # K, crops) Pellegrina (2022)

Cx = 6.63 Sectoral trade elasticity (non-agriculture) Pellegrina (2022)

ok =039 Crop labor share (k # K) Fajgelbaum and Redding (2022)
oK =0.58 Non-agricultural labor share Fajgelbaum and Redding (2022)
Panel C: Location choice parameters

6=3 Migration elasticity € [2,4] Morten and Oliveira (2018)

B =032 Congestion to population density Desmet et al. (2018)

I retrieve distance(i, j) for all location pairs by feeding the road network and fric-
tion surface data to a pathfinding algorithm that calculates the shortest routes and
respective distances between all neighboring cells. Then, I use the Dijkstra algorithm
to calculate the shortest distance between all pairs. Finally, I map these distances onto
T with a GMM that estimates § = 0.168 and TiI; = 7.8. This last step is done simulta-
neously with the calibration of other fundamentals, as explained in Section 5.3.

Figure 5 illustrates subsamples of the quantified 7. It shows the complexity of
the trade network, which replicates well the existing transportation infrastructure
both within and across countries. As expected, trade frictions increase with distance.
Moreover, the discontinuity of the gradient is evidence of the additional cost of inter-

national trade captured by TI-I; .

5.3 Productivities, sectoral shifters, land endowments, and trade costs

The set of fundamentals and parameters {H, A, bf‘, Qy, tk

ij’
lows. First, I set H as each cell’s land area in square kilometers. Subsequently, I follow

d}ijx are quantified as fol-

Costinot et al. (2016) and use the agro-climatic yields from GAEZ as the fundamental
productivities of crops {Ai-‘}ie Sk x-2® The underlying rationale is that the GAEZ data

23To be consistent with the SSA rural context in 2000, I use the agro-climate potential yields calculated
for rain-fed agriculture with low usage of modern inputs. See Appendix A for details.
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Figure 5: Estimated trade network for SSA — Western and Eastern Africa
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Notes: Notes: Estimated trade network for Western Africa (left) and Eastern Africa (right). The
network is built by finding the shortest path between all neighboring cells over the road infrastructure.
T;j represents the estimated iceberg trade costs with respect to the capital of Nigeria (left) and the
capital of Kenya (right), both represented by a black dot. See Section 5.2 for details.

provides potential yields and is thus informative about the productivity variation
across location-crops that is driven exclusively by differences in natural character-
istics, including the climate. The variation in effective producvity across locations,
conditional on the former, is embedded in {bf};.

To quantify the remaining elements t = {Tl-l;, stand T = {{AK}, {VF} i, {Q0, Ok},
I implement a two-stage procedure. In the first stage (inner loop), I guess values for
t and quantify T by inverting the general equilibrium conditions of the model. Then,
the second stage (outer loop) estimates t with a GMM that targets model-generated
moments to their data counterparts conditional on the first stage. In what follows, I
concisely describe this two-stage approach, leaving further details to Appendix B.6.

Model inversion (inner loop). This step calibrates T by inverting the spatial equilib-
rium so that the model reproduces, in general equilibrium, the spatial distribution of
GDP, the spatial distribution of sectoral production, and the relative 2 and K aggre-
gate expenditure shares. I represent this solution of this inner loop, conditional on a
guess for t, as z (T; t) = 0.

Importantly, the model inversion identifies the product {blKAlK}i (since its two ele-
ments cannot be separated), and pins down {bf‘} kK in relative terms within locations.
Therefore, the latter is identified using within-crop variation in observed production
across locations, conditional on the fundamental productivities of A. The former,
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conditional on the latter, is identified using spatial variation in GDP.

Estimation (outer loop). This step estimates t with a GMM that exploits moments
related to international trade flows and prices. Specifically, I design the first moment
my =YY Yice Ljec Lk Xffj, that is, the aggregate exports between all country pairs
in SSA. It provides variation to identify TZ-I; = tf given the (intuitive) decreasing
relationship between tariffs and international trade flows in the economy.?*

Then, I take an innovative approach that identifies J using spatial variation in crop
prices. Rather than using bilateral price (wedges), as in the literature, I read my crop
price data as sectoral prices Pf‘ and use its dispersion to identify § with m, = stan-
dard deviation (P¥).% Intuitively, the identification relies on the positive relationship
between trade frictions and price dispersion: the lowest the former, the more homo-
geneous are price indexes across space (hence, less dispersion). Appendices B.6 and
B.7 elaborate on identification aspects and discuss data-related aspects, such as the
mapping between time-varying prices with the static framework of my model.

My approach is innovative for two reasons. First, it provides a novel method
that quantifies bilateral trade costs with an empirical counterpart that is much more
accessible (especially for developing economies): local prices rather than bilateral
prices. Second, it pins down the differential role of geography (§) and tariffs ()
when determining trade costs, thus allowing for experiments along this dimension.

For the estimation, I define m = [my, m,] and g (t) = [m(t) — m9%] and solve for
t which, based on E [¢ (t)] = 0, satisfies:

t=arg min g (t) Wg (t)" subject to z (T; t) = 0,

where W is the weighting matrix. The estimates t = {7.8,0.168} (with bootstrapped
standard errors of {0.357,0.012}) have meaningful economic implications. First, £f =
7.8 suggests barriers for international trade in SSA that are substantially larger than
developed economies (such as tF = 2.375 for the US from Antras et al., 2022). Second,
my ¢ estimate is about half of what Moneke (2020) estimates using only Ethiopian
data. That stresses the importance of using cross-country data for continental-scale

applications like mine: assuming a higher 6 would underestimate .2

24In practice, m is aggregated over the set of country-pair-crop combinations covered by the ITPD-E
trade data. In fact, its relative sparsity (in terms of observed trade flows for SSA by the early 2000s) is
the main reason behind the modeling of 7;; = 7F, that is, a common tariff for all country pairs in SSA.

2] take this approach because the WFP-VAM data do not specify the location of production of the
crops. Hence, it should not be interpreted as bilateral prices (as in, for instance, Donaldson, 2018), but
rather as local crop prices in different locations in SSA (i.e., crop prices indexes as in Equation (7)).

26My estimated trade costs lie also within other estimates that use different functional formats (e.g.,
Donaldson, 2018; Pellegrina, 2022, for India and Brazil, respectively); see Appendix B.9 for details.
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Table 2: Quantified fundamentals and parameters, data sources, and matched moments

Fundamentals Subset Description Data source / Moment matched

L - SSA’s initial Population data in 2000
population and 1990

{bF}ics - Productivity shifters ~ Matched to location-sector

production data

{ Q% ok O, =1 Sectoral preference Matched to aggregate sectoral
Qg = .16 shifters expenditure
- Land endowments Grid cell land areas

{A¥}icsksx  Agricultural produc-  GAEZ data

tivities
{AK}ies Non-agricultural pro- Matched to GDP data
ductivities
U - Amenities Matched to population data
T dist(i,j) Bilateral travel Transportation data
distance
J = 0.168 Distance elasticity Matched to spatial dispersion
(0.012) of T of sectoral prices
Tll; =78 Tariff-like Matched to aggregate trade
(0.357)  trade friction flows
M dist(i,j) Bilateral travel Transportation data
distance
¢ = 0.46 Distance elasticity Matched to total internal
(0.025) of m;; migration (from census data)
{mC}CC:1 Country migration Matched to country migration
barriers data (from bilateral flows)

Notes: Values in parenthesis stand for bootstraped standard errors; refer to Appendix B.6 for details.

5.4 Migration frictions and amenities

As with T, I set the bilateral component of migration frictions to be proportional to
distance, i.e. m;j = distance(i, j)?. Thus, the remaining elements to be quantified are

{¢,mc,u;};., which are solved for with an analogous two-stage procedure.

Inner loop. It uses the quantified elements in Section 5.3 to solve for prices and
real income in the economy. Then, starting with a guess for ¢, it inverts the spatial

equilibrium for {m.}. and {u;}; such that the model replicates, respectively, the gross
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migration flows at the country level and the spatial distribution of the population.?”

The separate identification of {m.}. and {u;}; is possible because they are additively
separable in the denominator of eq. (18). That provides within-country variation in
terms of potential origins from which the migration cost is or is not scaled by {m.},
and allows for a separate identification conditional on {u;};.?® The latter, conditional

on the former, is identified with spatial variation in population.?

Outer loop. It consists of a similar GMM that estimates ¢ = 0.46 (with bootstrapped
standard errors of 0.025) by matching the total internal migration observed in the
census data.’’ It conveys evidence of large mobility barriers in SSA: the resulting
(median) {m;;};; is about 20 percent higher than the estimates for Indonesia (from
Bryan and Morten, 2019), and three and four times larger than those for Brazil and
the US (respectively from Morten and Oliveira, 2018; Allen and Donaldson, 2022).31

5.5 Validating the model

Before using the quantified model to simulate the future, I first check the reasonability
of the quantified fundamentals. They align well with the mechanisms in the model.
I find high non-agricultural productivities in highly productive locations, high mi-
gration barriers in countries with (relative) little migration, high amenities in denser
locations with (relative) low real income, and preference shifters that match the SSA
context (and are close to estimates from related studies; see Appendix B.10 for details).

Next, I test the capacity of the model to replicate observed moments with a back-
casting exercise that solves for the spatial equilibrium in 1975 using the GAEZ agri-
cultural productivities and population endowments in that year. The result illustrates
the extent to which the model is able to replicate the population changes in SSA be-
tween 1975 and 2000 using the observed changes in the climate during that period.>?

YImportantly, the international migration data from Abel and Cohen (2019) provides cross-country
gross flows between 1990 (the earliest year available) and 2000. Thus, my estimation requires a measure
of the initial population in 2000, i.e. {L%};. I calculate it by scaling the distribution of the population
in 1990 to the levels of SSA population in 2000, while accounting for the observed natural population
growth rates (fertility minus mortality) across countries during the period. Intuitively, this represents
the population distribution in SSA if there had been no mobility during that period.

28Intui’cively, the additive separation holds because, for each destination, there are several origins of
migrants, some of them being other countries and others not.

P Therefore, amenities stand as a structural residual of my model: it rationalizes all location choices
observed in the data that cannot be explained by differences in real wages and migration frictions.

30To be consistent other data, I use internal migration flows between 1990 and the early 2000s.

31 As with trade costs, the estimates from these sources are not directly comparable to my ¢ due
to different functional formats and/or units (e.g., travel time rather than distance). Appendix B.9
discusses their equivalence in detail and the reasons for (and benefits of) my specification.

32The data source for the 1975 population (GHSP) differs from that used in the calibration (G-Econ).
I check their compatibility using the correlation between them for the population in 2000 (available in
both datasets) at the grid-cell and country level. Furthermore, in order to have an initial population for
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Figure 6: Validation of the calibrated model in levels and differences

Panel A: Observed population in 1975 Panel B: Estimated population for 1975
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Notes: Panels A shows the observed 1975 population distribution in SSA while Panel B shows the
distribution produced by the model. The values are shown in percentiles, where 1 (100) stands for
the bottom (top) percentile of each sample. Panel C plots the model fit in terms of population change
(between 1975 and 2000, in thousands) while Panel D plots the model fit for country-level agricultural
employment in 2000 (in percentage points).

Panels A and B of Figure 6 report the results in levels. The model closely replicates
the spatial distribution of the population in 1975 both within and across countries.
Moreover, Panel C shows that the results closely fit the population changes between
1975 and 2000, with a slope and R? of about 0.9. Importantly, the major change in this
backcasting exercise is on the agricultural suitabilities, i.e. {Ai‘ }Vik4k- According to
the GAEZ estimates, about 75 percent of the locations in SSA experienced a decline
in crop yields between 2000 and 1975. Thus, the fact that using this variation in the
model can explain the changes in population during the period confirms the model’s

solving the model for 1975 —i.e. {LY}; — I project the 2000 population distribution onto the 1975 levels.
Appendix B.11 discusses that in detail.
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capacity to provide reliable forecasts of the future using the GAEZ estimates.®

As an additional overidentification test, in Panel D I compare country-level agri-
cultural employment shares (for all crops) generated by the model for 2000 against
World Bank data. The model closely replicates the ranking of countries with respect
to agricultural employment shares, though it underestimates their levels. In aggre-
gate, the model predicts about a 25 percent share of employment in agriculture as
compared to 58 percent in the data. The main reason for this discrepancy is that I

include only a subset of the crops produced in SSA.

6 Climate change and migration: the 2080 forecast

I quantify potential climate migration in SSA by performing a series of counterfactual
simulations. The benchmark exercise consists of solving for the spatial equilibrium
in 2080 with and without climate change. By comparing the two, I quantify the im-
pact of climate change on population reallocation, welfare losses, and other outcomes.
Subsequently, I study the role of the model’s mechanisms and conduct a policy exper-
iment that investigates the impact of climate change if SSA becomes as frictionless as
the EU (in terms of migration and trade barriers). I conclude with robustness checks.

6.1 Benchmark counterfactual

I solve for the spatial equilibrium in 2080 by inserting the 2080 forecasts of the initial
population £ and crop productivities A into the calibrated model. The former is ob-
tained by scaling the observed population of 2000 using the estimates of country-level
population increase from the Population Prospects of United Nations and Social Af-
fairs (2019) for 2080.3* The latter, in contrast, is taken directly from the GAEZ data.
For the climate change simulations, I use the estimates of potential crop productivities
in 2080 based on the business-as-usual scenario.*® The simulations with no climate

change assume no changes in .4 and thus capture only the increase in population £.3

33 A complementary explanation for the good fit in this exercise is path dependence (i.e. the densest
locations in 1975 are also the densest in 2000). That is, in a context of high mobility frictions, such as
in SSA, the geography of the economy needs extreme shocks to its fundamentals in order to generate
dramatic changes in this kind of counterfactual. As shown in Figure B.5, the changes between 1975
and 2000 are not as dramatic as the ones expected by 2080.

34These estimates project the observed country-level natural rates of population growth (fertility
minus mortality without migration) at the beginning of the 215 century onto subsequent years. Hence,
I assume that fertility is exogenous. Section 6.4 shows how the results change if fertility is endogenized.

%Specifically, I draw the GAEZ data that assumes the business-as-usual future scenario, that is, the
Representative Concentration Pathway (RCP) 8.5; see Appendix A for details.

%6Note that the spatial distribution of outcomes in the no-climate-change simulations differs from
the observed distribution for 2000 due to dispersion forces driven by 6 and $.
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I quantify climate migration, AL;, using the differences between the equilibrium
populations of the two simulations — with and without climate change. Hence, it mea-
sures migration pressure in each location i net of the potential migration inflows and
outflows. Similarly, I infer the changes in sectoral specialization from the differences
in non-agricultural employment ALK (in percentage points) and the welfare changes
from the percentage change in real income per capita, Av;/P;.

Figure 7 shows the results on a map. At the country level, Panel A shows large
climate migration flows — on the order of a million individuals or more — from Western
Sahelian countries like Mauritania and Senegal to nearby countries (e.g. Mali, Ivory
Coast, and Burkina Faso) and from DR Congo and other South African countries to
Tanzania and South Africa. Panel B, which presents grid-cell-level results, shows a
high degree of within-country heterogeneity. Countries experiencing large migration
outflows, such as Senegal and DR Congo, also experience a high level of internal
migration. There are large movements from their central locations, which are highly
affected by climate change, to their relatively less affected south(western) locations.
Overall, countries heterogeneously hit by climate change experience large internal
migration flows and large population increases in their capitals.?”

Panels C to F show the results in terms of structural change and real income per
capita. The countries that benefit from climate change, such as Tanzania, Rwanda,
and Kenya, specialize into agriculture (Panel C). This occurs because such an increase
in comparative advantage transforms them into the new agricultural powerhouses of
SSA. As a consequence, their real income increase (Panel E), which attracts migrants
from nearby countries, such as DR Congo and Mozambique. Panel D and F illustrate
the richness of these results in terms of within-country heterogeneity. Even within
countries that benefit from climate change, there is substantial variation in terms of
sectoral specialization and welfare effects.

Nevertheless, some countries forcedly shift towards agriculture in a non-welfare-
improving way. Western African countries like Guinea and Sierra Leone are an exam-
ple: compared to the no climate change scenario, they need to produce higher crop
quantities to supply food to nearby countries that, being much more affected by cli-
mate change, specialize out of agriculture (e.g. Mauritania and Senegal). This shows
that the necessity aspect of crops limits the Western African economies to adapt to cli-
mate change (through structural change) and forces them into a climate change-driven
poverty trap. Interestingly, the opposite holds for DR Congo. Climate change pushes
individuals from its poorest regions either abroad or to its more productive south. As

it stands among the poorest SSA countries in the no climate change scenario, such a

%See Table D.3 for details. Note that the large estimated increase in the populations of capital cities
is consistent with the findings in the empirical literature on the high urbanization rates associated with
climate change (e.g. Henderson et al., 2017; Peri and Sasahara, 2019; Castells-Quintana et al., 2021).
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Figure 7: Counterfactual results for a climate-changed SSA in 2080
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Notes: Panel A and B plot the results of climate migration in thousands of individuals. Panel C and
D describe the results in terms of non-agricultural employment, in percentage points. Panel E and F
present the welfare results in terms of percentage changes in real GDP per capita.
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productivity-improving reallocation slightly increases real income in relative terms.
In aggregate, the estimated climate migration flows in SSA total about 14 million
individuals (Panel A of Table 3 column 1). This is much lower than Rigaud et al.
(2018)’s estimates of 90 million climate migrants in SSA by 2050. This discrepancy
is explained by the migration frictions that I account for and estimate using actual
migration data. Without them, my estimates of climate migration increase to 87 mil-
lion individuals, surprisingly close to these studies.*®® 1 explore this result in detail,
together with other aspects of the role of migration barriers, in Sections 6.2 to 6.4.
Table 3 also shows that climate change barely affects aggregate welfare. However,
this seemingly null effect hides a large degree of heterogeneity. At the country level,
the bottom and top deciles of welfare changes are about -10 percent and 3 percent,
respectively (Panel B). Thus, climate change will lead to unequal consequences across
SSA, generating some winners and many losers (see Figure 7 Panel E). This final out-
come depends on several mechanisms that interact with each other, such as migration
barriers and the heterogeneous forces driving sectoral specialization and structural
change. I investigate the welfare importance of these mechanisms in Section 6.2.
Furthermore, climate change hardly affects aggregate sectoral employment. In dis-
tributional terms, however, this effect is also heterogeneous and negatively skewed:
the top and bottom deciles of the country-level changes in non-agricultural employ-
ment are about -4 percentage points and 1.5 percentage points, respectively, and the
median country experiences a decrease in non-agricultural employment of about one
percentage point. This happens because, with climate change, more labor needs to
be employed in agriculture to produce the necessary quantity of crops (making these

countries poorer and increasing their agricultural expenditure share).>

6.2 Investigating the underlying channels

I investigate the extent to which the model’s underlying channels (migration fric-
tions, trade, and crop-switching) affect the estimated climate migration flows and the
associated welfare and sectoral specialization effects. To do so, I perform additional
simulations centered on each of the channels.

38This pattern is with consistent related findings that show that large mobility frictions in developing
economies may have an inhibiting effect on future climate migration and thus may exacerbate welfare
losses (e.g. Peri and Sasahara, 2019; Benveniste et al., 2020; Burzynski et al., 2022).

3This result is consistent with related findings in the literature. For instance, Nath (2022) estimates
an increase in agricultural expenditure shares of about 2.7 percentage points in the world’s poorest
quartile of countries, whereas Cruz (2021) estimates an increase in global agricultural employment of
about 2 percent. The main channel explaining the differences in magnitude between those estimates
and my own (0.83, median) is the multi-crop feature of my framework. By not taking into consid-
eration the potential production reallocation within agriculture (i.e. across crops), the consumption
specialization effect of climate change is overestimated. I discuss this extensively in Section 6.2.
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Table 3: Aggregate and disaggregate results of the climate change counterfactuals

(1) ) ) @)
Baseline No mig. fric.  No tariffs Agriculture as
(i = 1) (tF =1) one crop
Panel A - Aggregate effects:
Climate migration! 14.33 87.15 1.04 10.27
A Real income pc (%) -0.07 8.08 -0.18 -2.44
ALII< (non-agric. -0.10 0.81 -0.21 -1.23
employment, %)
Panel B - Country-level effects:
Median A population® 0.09 -0.86 0 0.05
Bottom/top deciles [-0.72;1.23]  [-3.97;0.38] [-0.06; 0.12] [-0.57; 0.64]
Median A Real income pc (%) -1.87 0.97 -0.31 -0.62
Bottom/top deciles [-9.8; 2.61] [-1.48; 4.98] [-2.01; 1.36] [-9.53; 3.9]
Median ALK (%) -0.88 0.61 0 -1.08
Bottom/top deciles [-3.78; 1.42] [-2.54; 5.63] [-5.39; 2.8] [-3.78; 2.78]

Notes: Column 1 shows the baseline results, column 2 shows the results with no migration frictions
(mjj = 1 for all i, j), column 3 shows the results with no tariffs to international trade (tF = 1), and
column 4 shows the results when assuming a single crop. !Climate migration in million individuals.

Migration frictions. I study the role of migration costs with an experiment that elim-
inates them (i.e. m;; = 1 for all i,j; results in column 2 of Table 3).4 As expected,
aggregate migration flows increase substantially — by about 70 million climate mi-
grants. Perhaps surprisingly, the aggregate welfare consequences of climate change
are reversed: real income per capita increases by 8 percent.

What explains this welfare-improving role of migration as adaptation? The an-
swer lies in its interaction with sectoral specialization. Facing reduced mobility bar-
riers, workers in affected areas can migrate to farther-away, more productive regions,
which improves the efficiency of the SSA economy in terms of sectoral comparative
advantage. In the climate change scenario, this means that agricultural production re-
allocates to the climate-change-benefitted regions, while non-agricultural production
moves to the most developed countries in SSA. This efficiency gain increases real in-
come in SSA and reduces the demand for agricultural goods and employment in that
sector. Thus, migration allows SSA to benefit from the push-aspect of climate change
by permitting individuals to move out of unproductive rural regions and allowing the
economy to go through a welfare-improving process of structural transformation.

Table 3 Panel B provides quantitative evidence of this result. The distribution

40This exercise eliminates mobility frictions in the simulations with and without climate change.
Thus, the comparison of the two isolates the climate change effect and shows how they compare with
the baseline in the absence of these barriers. The same applies to the counterfactuals below.
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of non-agricultural employment changes across countries shifts rightwards wtihout
mobility frictions, thus confirming that more countries specialize out of agriculture in
this scenario. Hence, my results corroborate the well-established potential of reducing
migration barriers in rural economies (e.g., Bryan et al., 2014; Bryan and Morten, 2019;
Lagakos et al., 2023), but in the context of adaptation to climate change.

The role of trade. Table 3 Column 3 presents the results of a counterfactual without
tariffs (i.e., ¥ = 1). On aggregate, climate migration flows decrease dramatically, by
about 90 percent. This occurs because lower trade frictions permit the economy to
adapt through sectoral specialization, thus discouraging migration (as in Conte et al.,
2021). This is evident in Panel B: the distributional changes in sectoral employment
centers around zero and widens remarkably, meaning that relatively benefitted coun-
tries specialize even more in agriculture (and the opposite for damaged countries).
In terms of aggregate welfare effects, removing tariffs seems not as efficient as
removing migration barriers. However, it is much more efficient in distributional
terms: columns 2 and 3 of Table 3 Panel B show that the distribution of real income
changes is relatively wider in the case of relaxed migration. That is, while migration
allows SSA to adapt to climate change in an aggregate welfare-improving manner, it
makes the individuals remaining in the most-affected regions relatively worse off.*!
Therefore, the results imply that mitigating climate change by reducing migration
barriers poses a trade-off between aggregate gains and higher inequality (and climate
migration), if compared to eliminating tariffs. In Section 6.3, I explore this in detail

with a set of experiments centered at realistic migration and trade policies.

Crop switching. To investigate the importance of the multi-crop feature of my frame-
work, I perform a counterfactual exercise in which agriculture is comprised of a single
crop (results in Table 3 column 4).*> Compared to the baseline, climate migration de-
creases only slightly. However, aggregate welfare losses and agricultural employment
increase dramatically. This is explained by the heterogeneity of the expected crop
yield changes within locations (Figure 2). Affected producers can, in a multi-crop
setting, reallocate agricultural production to the less-affected crop (but not in the case
of a single crop). Hence, assuming a single crop overestimates the impact of climate
change on agricultural productivity and amplifies the necessity for the economy to
allocate, on aggregate, more labor into agriculture. Thus, accounting for this mar-
gin is key in correctly predicting the impact of climate change on subsistence rural

economies like those in SSA.

“INote that eliminating migration frictions m;j does not remove the congestion forces in the economy.
The heterogeneity of agents with respect to their location choice (disciplined by 6 and p) still works as
a dispersion force, thus preventing all agents from moving to the best locations in the economy.

#2] assume a representative crop whose spatial distribution of potential yields is the cross-crop aver-
age within a location. See Appendix C.1 for details.
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6.3 Policy experiment - SSA as frictionless as the EU

One of the key takeaways from Section 6.2 is the trade-off that migration policy poses:
it allows SSA to be better off when adapting to climate change at the expense of higher
regional inequality and migration (if compared to trade policy). In what follows, I
turther investigate this trade-off with a realistic set of policy experiments. Specifically,
I quantify the consequences of climate change for SSA in the hypothetical scenario
where migration and trade frictions are reduced to the levels prevailing in the EU.

Doing so requires the quantification of the migration and trade frictions in the
EU within the structure of the model. I do that by mapping the country migration
barriers {m.}. and tariffs Tl-l; onto EU migration and trade policies. Focusing on these
parameters is particularly convenient because they reflect the institutional character-
istics of the EU in terms of trade and migration policies. In other words, they are
more tangible and realistic, as policy tools, than the elasticity parameters ¢ or 6.3

In practice, I quantify {m.}. and Tl-l; by bringing the model to the EU data using
the procedure described in Section 5.** The estimated EU frictions are substantially
lower than those in the SSA. For trade, I estimate Til; = 2.6, which is a third of SSA’s
and remarkably close to estimates for the US (tF = 2.375 from Antras et al., 2022).
Figure 8 shows that: the discontinuity in bilateral frictions for cross-country trade is
barely visible. It also shows that the estimated EU country migration barriers are
much less stringent. The average {1} is 60 percent lower than in the SSA case, and
its distribution is shifted far more to the left (Panel B).

Armed with that, I perform counterfactual simulations that replace the trade and
migration barriers with the EU values. Table 4 Column 2 shows the results for trade
policy only. Reducing tariffs to EU levels reduces climate migration flows by a tenth
and widens the distribution of sectoral employment changes. It also narrows and
shifts rightwards the distribution of welfare changes (i.e., the median country expe-
riences losses of about one percent). As in Section 6.2, the underlying channel is
the higher adaptive capacity achieved through sectoral specialization, which reduces
the inequality on the climate change impacts. Thus, trade policy can be a powerful
tool for a policymaker interested in reducing migration flows while attenuating the
distributional impacts of climate change.

I next conduct an analogous exercise that instead reduces country migration bar-

#3Moreover, a comparison to the EU provides results that are more policy-relevant: equating the
parameters to EU levels reflects tangible policy actions with a real-world connection. This is less the
case with arbitrary changes, as in Section 6.2.

#This requires data for the same period and therefore the estimated values for the EU are also for
2000. Importantly, I focus on isolating the variation in the observed trade and migration flows within
the EU. Thus, the values of the preference parameters and the bilateral elasticities § and ¢ remain as
described in Table 2. See Appendix B.12 for details.

32



Figure 8: Estimated trade and migration frictions in the European Union
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Notes: Panel A presents trade frictions in the EU as was done for SSA in Figure 5 (in this context, trade
frictions are relative to Barcelona (Spain), represented by the black dot). Panel B plots the distribution
of country migration barriers {m.}. (in logs, x-axis) in SSA and the EU.

riers to EU levels (column 3).*> In line with previous results, there is an increase in
climate migration (Panel A) that sets off the migration-induced process of structural
change described in Section 6.2. The magnitude of the results is not as stark as in
that case. Yet, they do show that by reducing country migration barriers to EU lev-
els, a policy maker in SSA can eliminate the aggregate losses due to climate change,
although at the cost — as before — of more climate migration and regional inequality.
Figure 9 Panel A documents visually the inequality aspect of migration policy, and
shows that the same pattern holds if using alternative measures of welfare (Panel B).*

Then, I combine both policies (column 4) and find that the policy mix reduces cli-
mate migration by about 90 percent. Moreover, it drastically attenuates the inequality
effect of the migration policy alone. The distribution of welfare changes narrows and
centers much closer to zero, and the mass of countries experiencing substantial wel-
fare losses drastically reduces (Figure 9). The importance of this policy experiment
cannot be overstated: by combining both tools, a policymaker can take advantage of
climate change by enabling SSA to structurally change and adapt, through trade and

migration, more efficiently and less unequally.

45T match the EU {m}, values to the SSA countries by deciles (i.e. scaling the barriers of the SSA
countries to the value of their respective decile in the EU distribution). See Appendix B.12 for details.

46Panel B documents the analogous changes for an alternative measure: weighted expected welfare
W; = w; Zjes(v]-/Pj)emi}Quj(Lj/Hj)’ﬁ, where w; = L;/L (i’s initial population share). It accounts for
other components of utility in eq. (4), like amenities, congestion, and migration costs.
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Table 4: Aggregate and distributional results of the policy experiments

1 2) 3) (4)
Baseline EU trade EU mig. EU trade +
frictions barriers mig. barriers
Panel A - Aggregate effects:
Climate migration! 14.33 1.35 18.89 241
A Real income pc (%) -0.07 -0.79 2.29 -0.61
ALZI‘< (non-agric. -0.10 -0.40 0.03 -0.48
employment, %)
Panel B - Country-level effects:
Median A population! 0.09 0 0 0
Bottom /top deciles [-0.72; 1.23] [-0.11;0.12] [-1.1;0.74] [-0.25; 0.11]
Median A Real income pc (%) -1.87 -1.55 -1.09 -1.54
Bottom/top deciles [9.8;2.61] [4.43;1.1] [-9.7;2.85] [-4.42; 1.17]
Median ALK (%) -0.88 0 -0.76 0
Bottom/top deciles [-3.78; 1.42] [-3.66; 2.09] [-3.11;2.72] [-3.69; 1.94]

Notes: Column 1 presents to the baseline results, while columns 2 to 4 present the results of
policy experiments in which frictions are equated to EU levels: in column 2, SSA adopts the same
level of tariffs as the EU; in column 3 it adopts the same migration policy, and in column 4 it
combines both policies. !Climate migration in million individuals.

6.4 Robustness checks and discussions

In what follows, I check the robustness (or discuss the importance) of the previous
results in several dimensions: the addition of the rest of the world, the migration
barriers, the climate change data used in the simulations, and various model’s as-
sumptions. Tables 5 and 6 show the results and Appendix C provides further details.

Rest of the world. I introduce trade and migration with the rest of the world (ROW)
by augmenting my setting with an additional R representative location.*’ Table 5 doc-
uments the results of several climate change simulations under this setting. Starting
with an analogous baseline exercise but with the ROW (column 2), I find that the
interaction with the ROW attenuates remarkably climate migration (about 5 million
individuals) and the distributional effects of climate change (i.e., lower median wel-
fare losses with a narrower distribution). That happens because now SSA increases
crop imports from the ROW and switches specialization as a response to the agri-
cultural losses. In fact, aggregate non-agricultural employment increases, and the

distribution of non-agricultural employment changes shifts drastically to the right.

41 introduce R as a representative location whose fundamentals and observed economic outcomes
are aggregates of the ROW (e.g., land endowments, population, income, migration flows). Ap-
pendix C.2 elaborates on that and documents the quantification method for this setting.
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Figure 9: Welfare effects of climate change for the baseline and different EU policies
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Notes: Panel A and B plot the distributions of country-level changes in welfare in three different
policy scenarios for SSA: baseline, EU migration policy, and EU trade and migration policy. Panel A
refers to the baseline welfare measure (real income per capita). Panel B refers to an alternative welfare
measure that also account for mobility barriers and congestion (see footnote 46).

Perhaps surprisingly, column 2 documents no climate migration from SSA to the
ROW under the baseline setting. That happens because of the remarkably high mpg
that my model quantifies relative to {mc}#R.48 Column 3 elaborates on that: re-
moving these barriers (mr = 1) increases aggregate migration, but towards the ROW
(of about 1.7 million individuals). Moreover, under this setting, the SSA is better off
both on aggregate and distributional terms, which shows the potential of removing
barriers from SSA to developed economies as a mitigating policy tool.

Subsequently, column 4 performs an exercise that removes tariffs between SSA
and the ROW, TR. In line with Nath (2022), this setting amplifies the capacity of crop
imports as adaptation. Specifically, there are major migration flows to highly pro-
ductive regions (and countries) in non-agriculture that acquire crops through imports
and specialize in non-agriculture. In fact, almost all SSA countries have now higher
non-agricultural employment as a consequence of climate change. Finally, column
5 shows that combining both policies amplifies this effect, allowing more people to
migrate both within and across SSA, increasing its specialization in non-agriculture,

and considerably reversing welfare losses.

Country migration barriers. I also check the sensitivity of my baseline results to

#Specifically, the quantified migration barriers to the ROW exceed those to SSA countries in the
order of dozens of thousands. This is not a farfetched result: the observed migration flows, while large
in magnitude, are in relative terms drastically lower than the real income differences between the ROW
and SSA (which, through the lens of my model, is interpreted as high mpg). Importantly, this null effect
on climate migration does not mean that there is no migration between SSA and the ROW, but rather
that this number does not change in the presence of climate change.
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Table 5: Aggregate and disaggregate results of the climate change counterfactuals account-
ing for trade and migration with the rest of the world (ROW)

1) 2) (©) (4) (5)
Baseline  Baseline+ ROW +no ROW + no ROW + no
ROW  Dbarriers mg tariffs TR  tariffs/barriers
Panel A - Aggregate CA effects:
Climate rnigration1 14.33 4.79 4.29 19.61 17.65
(of which to the ROW)! 0.00 1.67 0.00 11.93
A GDP pc (%) -0.07 -0.70 2.00 1.31 3.50
ALK (non-agric. -0.10 0.82 0.04 1.58 0.36
employment, %)
Panel B - Country—level CA effects:
Median A population’ 0.09 0.02 0.09 0 -0.03
Bottom/top deciles [-0.72; 1.23] [-0.04; 0.31] [-0.19; 1.33] [-0.03; 0.45] [-0.53; 0.66]
Median A GDP pc (%) -1.87 -0.51 -2.22 -0.01 -0.56
Bottom/top deciles [-9.8;2.61] [-3.01;2.75] [-6.94;5.34] [-1.47;1.5] [-3.21; 6]
Median ALK (%) -0.88 0.46 0 0.39 0
Bottom/top deciles [-3.78; 1.42] [-1.51; 4.39] [0;2.97] [-2.61;7.63] [0; 7.99]

Notes: Column 1 presents the baseline results, while columns 2 to 5 present the results of extensions with
the ROW: column 2 is analogous to the baseline but where trade and migration also take place between SSA
and the ROW, column 3 eliminates migration barriers into the ROW (m, = 1), column 4 eliminates tariffs for
trading between SSA and the ROW (TR = 1), and column 5 eliminates both barriers. !Climate migration in
million individuals.

potential changes in country barriers over time. There are two reasons for that. First,
the time frame of migration choices in my setting is of about a decade, whereas the
time interval of my counterfactuals is of almost a century (during which agents could
become less sensitive to the decade-specific migration barriers). Second, restrictive
countries could become even stricter to foreign migrants over time. I account for these
two potential patterns by increasing or decreasing {1} (results in Table 6 Panel A).*’
The changes in the results are consistent with the findings of Table 3 column 2, but

with lower magnitudes (and in the opposite direction if increasing m.).

Homothetic preferences. I now show that the nonhomotheticity feature of the pref-
erences for agricultural goods and non-agricultural goods is a key driver of climate
change’s welfare consequences. Table 6 Panel B shows the results of a counterfactual
that assumes homothetic preferences (see Appendix C.3 for details). There is almost
no aggregate climate migration in this framework, and the welfare losses are dra-
matically centered around zero. This occurs because, by disregarding the subsistence

aspect of agricultural goods, agents replace agricultural goods with non-agricultural

#n particular, T alter the distribution of country barriers with (m.)!, where ¢ is 1.25 (0.75) in the
increasing (decreasing) case. I choose the monotonic transformation (instead of scaling them up or
down) because the barriers {1}, matter in the location choice (Equation (18)) up-to-scale.
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goods. This intensifies the patterns of sectoral specialization (i.e. more production
and consumption of non-agricultural goods takes place in the most affected regions),

increasing non-agricultural employment on aggregate and distributional terms.

Endogenous fertility. I perform a simple exercise that illustrates how the results
change if fertility is allowed to be endogenous to climate change. To do so, I adjust the
estimates for population growth taken from the Population Prospects of United Na-
tions and Social Affairs (2019) using a damage function that depends on the average
change in potential crop yields.” This reduces the initial population £ assumed in the
counterfactuals for 2080, particularly in the most affected countries. Table 6 Panel B
shows that the baseline results are unresponsive to this dimension: aggregate climate

migration and related effects remain around the same magnitude.

Economic growth. I also allow the non-agricultural sector to grow by increasing
sector K’s TFP over time (using each i’s average country growth in the first decades of
the century). My results remain qualitatively robust to this extension. This happens
because the quantified {bXAK}; has remarkable spatial differences in levels. Thus,

even if accounting for uneven growth across countries, the results remain unaffected.”!

Climate damage to non-agriculture. My baseline counterfactual assumes no effects
of climate change on the non-agricultural sector. The advantage of that is isolating
the consequences of the effects on agriculture, the most relevant push factor of migra-
tion for subsistence rural economies like SSA. However, I also check how the results
change if allowing the K" sector to be also affected. To do that, I scale the quantified
productivities of that sector by the equivalent sectoral damage function from Conte et
al. (2021).°2 Table 6 Panel C shows that the baseline results remain unchanged if so,
for the same reason if allowing for economic growth (see footnote 51).

Climate damage on amenities. Analogously, the baseline counterfactuals assume
that amenities {u;}; remain constant and unaffected by climate change. I relax this
assumption using the damage function of temperature on amenities by Cruz and
Rossi-Hansberg (2023).5% The baseline results remain robust (Table 6 Panel C) due to

In particular, I assume that the rate of net population growth changes by 50 percent of the change
in average potential yield in each location. Appendix C.4 provides further details and documents
additional results with alternative scaling rules. Importantly, I adopt this approach for simplicity,
rather than the more realistic approaches in the literature (Delventhal et al., 2021; Cruz and Rossi-
Hansberg, 2023), due to the static feature of my model.

S1Specifically, the observed real income differences (in levels) across SSA are remarkably high, yield-
ing level {bXAK}; differences across locations in the order of thousands or more. Hence, allowing
for uneven, country-level growth does not affect drastically its distribution, which explains the little
sensitivity of my results to this extension. Appendix C.5 discusses that in detail.

2The damage function depends on the deviations from the optimal temperature for the non-
agricultural sector. Thus, to conduct this experiment, I also use the forecasts of temperature for 2080
from Conte et al. (2021) and match them to the locations of SSA. See Appendix C.6 for details.

53] use their estimated A?(T;) damage function for the global economy; see Appendix C.7 for details.
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Table 6: Robustness of the benchmark results with respect to trade and migration frictions,
model assumptions, and climate change scenarios

1) () ®3)
Climate migration A Real income A Non-agricultural
(million individuals) per capita (%) employment (%)
Baseline results 14.33 [0.09] -0.07 [-1.87] -0.1 [-0.88]
Panel A: Robustness to country barriers
Higher country barriers m, 11.67 [0.04] -0.54 [-1.99] -0.09 [-0.86]
Lower country barriers m. 18.32 [0.06] 1.25 [-1.72] -0.07 [-0.86]
Panel B: Robustness to model assumptions
Homothetic preferences 0.38 [0] 0.03 [-0.25] 0.69 [0.62]
Endogenous fertility 13.8 [0.09] -0.08 [-1.85] -0.1 [-0.88]
Non-agricultural prod. growth 14.28 [0.09] -0.3 [-1.96] -0.13 [-0.84]
Panel C: Robustness to CA damages or scenarios
CA damages to non-agriculture 14.27 [0.09] -0.07 [-1.86] -0.1 [-0.86]
CA damages to amenities 14.35 [0.09] -0.05 [-1.87] -0.1 [-0.88]
RCP 4.5 CA scenario 8.18 [0.01] -0.04 [-0.52] -0.15 [-0.35]

Notes: Panel A presents the aggregate effect of climate change for different levels of trade and migration
frictions, driven by the parameters  and ¢, respectively. Panel B presents the results of the benchmark simula-
tion when (separately) assuming homothetic preferences between agriculture and non-agriculture, endogenous
fertility, and a less severe climate change scenario.

the large spatial dispersion of the quantified amenities.>*

Assumption of climate change scenario. I also check the sensitivity of the results
to the severity of the underlying climate change scenario, by switching to the RCP
4.5 scenario (which assumes that carbon emissions will peak by mid-century and
decrease thereafter). I simulate the model with the suitability data for this scenario
(Table 6 Panel C). As expected, all climate change effects are attenuated in this setting.

Endogenous climate and dynamics. The static nature of my model excludes, nat-
urally, dynamic mechanisms such as climate-economy feedback (as in Conte et al.,
2021; Cruz and Rossi-Hansberg, 2023) and forward-looking agents (like Balboni, 2021;
Takeda, 2022; Allen and Donaldson, 2022; Castro-Vincenzi, 2023; Kleinman et al., 2023;
Bilal and Rossi-Hansberg, 2023). The reason for the former is that Africa emits about 3
percent of global emissions, which makes it reasonable to assume exogenous climate
change. The reason for the latter is data-driven: the GAEZ data provides estimates for

specific points in time, rather than a time-varying function to feed a dynamic setting.

5 Analogously to the above (footnote 51), this is due to the large observed real income differences
across space that map into large level differences in {u; }; across locations. See Appendix C.7 for details.
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7 Conclusion

The main message of this paper is that climate change must not lead to bad out-
comes if rural economies like SSA can adapt to it. If mobility barriers can be reduced,
climate change can encourage the shift of population out of poor, low-productivity ru-
ral locations and set off a process of structural change. Openness to trade determines
the aggregate and distributional welfare effects of this process, by allowing affected
economies to switch production to less-affected sectors. The interaction of these — and
other — mechanisms in general equilibrium is complex and interconnected. I model
that with a transparent framework that I develop and connect to SSA data.

I identify that a high degree of frictions in SSA that inhibit the welfare-improving
process just described. My estimates suggest sizeable welfare losses of climate change
and migration flows in many orders of magnitude smaller than reduced-form esti-
mates from the literature. However, a policy experiment shows that, by becoming as
frictionless as the EU, SSA adaptation to climate change could increase welfare both
in aggregate and distributional terms. My climate migration estimates when relaxing
migration frictions approach those from other studies that disregard these barriers.

My results deliver important contributions to the literature and the policy debates.
I connect the findings from the literature on the gains from incentivizing migration
in developing economies with those from the literature on the importance of sectoral
specialization and trade in adapting to climate change. I also deliver a policy-relevant
message on the potential role of real-world trade and migration policies in adapting

to climate change.
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Appendix

Appendix A provides more details about the data sources mentioned in Section 2 and
other data sources not mentioned therein. Appendix B documents theoretical deriva-
tions that support the main results of Section 4. Appendix C describe alternative

models used in the robustness. Appendix D contains additional figures and tables.

A Data Appendix

Table A.1 below documents all data sources used and their temporal coverage. Next,

I provide further detail on the data choices and aggregation.

Table A.1: Main data sources

Type of data Coverage Source

GDP and Population 2000 G-Econ Project v4.0 (Nordhaus et al., 2006)
Population 1975, 2000 Global Human Settlements Project (Florczyk et al., 2019)
Population projections 2021 - 2100 United Nations and Social Affairs (2019)

Agric. Productivities 1960-2000 GAEZ v3.0 (ITASA and FAQO, 2012)

Climate A projections 2020, 2050, 2080 GAEZ v3.0 (IIASA and FAO, 2012)
Transportation data 2000 gROADS project (CIESIN, 2013)

Friction transportation surface 2000 Accessibility to Cities” project (Weiss et al., 2018)
Bilateral crop international trade 1995-2005 ITPD-E (Borchert et al., 2021)

Bilateral international migration = 1990-2000 Abel and Cohen (2019)

Bilateral internal migration 1970-2015 Census data from IPUMS (2020)

Crop prices 1990-2015 VAM project, World Food Program

GAEZ agro-climatic yields. The GAEZ'’s database provides estimates of agricultural
potential yields for several crops, in different time periods, and for different degrees
of technology usage in agriculture. As my interest in subsistence agriculture setup of
SSA, I aim at building a time varying dataset of potential yields over the entire sub-
continent, for several crops, at low usage of modern inputs: with rainfed water access,
labor intensive techniques, and no application of of nutrients, no use of chemicals for
pest and disease control and minimum conservation measures.

A challenge, however, is that the time varying potential yields from GAEZ are
available only for high usage of modern inputs (based on improved high yielding va-
rieties, fully mechanized with low labor intensity techniques, and usage of optimum
applications of nutrients and chemical pest, disease and weed control). The estimates
for different input levels are only available for the long-run estimates (averages be-
tween 1960-1990).
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Figure A.1: Yield gains from adoption of high inputs in agriculture vis-a-vis low
inputs for selected crops.

Panel A: High input gains for rice Panel B: High input gains for sorghum
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Notes: Panels A and B show the ratio of high/low input usage yields for growing two selected crops
according to GAEZ long-run estimates. The values are shown in deciles; 1 (10) stands for the bottom
(top) decile of each sample.

Therefore, to obtain a time varying dataset of the agro-climatic yields at low input
usage, I first use the long-run values to calculate the GAEZ-implied ratio between
high inputs (Ai."h) / low inputs (Ai.(’l) yields for each crop. This procedures reveals
how the gains from adopting higher input levels differ across locations and crops —
Figure A.1 illustrates the results for two selected crops in deciles. I use the calculated
ratios to scale down the time varying estimates for high inputs that I collect.

Armed with the location-crop technology scales, I collect the time varying esti-
mates of agro-climatic yields for high input usage. For the estimates in the past,
retrieve those for 1971-1975 and 1996-2000. I average out the 5 years” blocks so to
avoid year-specific outliers. The reason is to capture long term changes, which could
be contaminated if a certain year faces unusual climate conditions.

The yield estimates for future periods require another parametrical selection: the
underlying scenario for which the data is produced and with which climatic (general
circulation) model (GCM) the data is produced. As carefully discussed by Costinot et
al. (2016), the GAEZ v3.0 database provides such estimates produced with four main
GCM, and for several future scenarios. The latter is of key importance: it contains the
underlying assumption on how the global carbon emissions are going to evolve in the
future so to produce the changes in the climate.

I choose the scenario Al from the GAEZ database, which is the baseline scenario

of Costinot et al. (2016) that matches closely the current standard of severe evolution
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Figure A.2: Equivalence between long and longer-run estimates of radiative forcing
(proportional to carbon emissions) between SRES and RCP scenarios.

9

®

~

@

o

&

——RCP2.6
RCP4.5
~——— RCP6.0
RCP8.5
=  SRES A1B
=  SRES A2
= - SRES B1
A 1S92a

—_ -
o N
T

e

S

SRES-81
SRES-A1B
SRES-A2
RCP2.6
RCPA4S5
RCP6.0
RCP8S |

RF total (Wm?)

)
N
\\\
LN
R
RN
" |

Anthropogenic Radiative Forcing (W m2)
o

o
T
|

| | | | |
2000 2050 2100 2150 2200 2250 2300

1950 1975 2000 2025 2050 2075 2100 Year
Year

Source: IPCC (2012), chapter 1, Figure 1.15 (left) and Chapter 12, Figure 12.3 (right).

of the global climate for the future: the RCP 8.5.°°> This scenario assumes a steady
increase in carbon stocks in the atmosphere througout the 21st and 22nd centuries,
becoming stable by mid-23rd century. A milder scenario that I use for my robustness
checks is the B1, which is similar to the nowadays-standard RCP 4.5. It assumes that
the global stock of carbon will peak by late 21st century, becoming stable thereafter.

Agricultural production data. To build a dataset for agricultural production at the
location-crop level for 2000, I combine the GAEZ data of production (in tonnes) with
the FAOSTAT agricultural production data (country-crop level) and World Bank coun-
try GDP data (both in current US$). First, I use the GAEZ data at the cell-crop level to
calculate the share that each cell is observed to produce, of each crop, over its coun-
try’s total production. Second, I obtain with the FAOSTAT and WB data the share
of each country crop production for the years of 2000 to 2010. I average out such
shares and multiply them by the country GDP implied by the G-Econ data, so that
the unit is consistent with the monetary unit of the model (US$ PPP). Finally, I multi-
ply the country-crop PPP values by the location-crop shares. For very few locations,
the outcome exceeds their total GDP: I then trim the value by 99.99% of its GDP.

Crop price data. The Vulnerability and Assessment Program from the WFP (WFP-
VAM) has been collecting prices at various markets (locations within cities) across the
developing world since the early 1990s at the monthly basis; I retrieved the prices
for all SSA markets from the earliest dates to early 2019. When doing so, I focus on

%The GAEZ v3.0 forecasts are based on the Special Report on Emission Scenarios (SRES; see IPCC,
2000). The SRE Scenarios were later updated by IPCC as the RCP scenarios, which are now the
standards in the climate community (IPCC, 2012). Figure A.2 illustrates the equivalence between the
SRES and RCP scenarios.
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Table A.2: Summary statistics of the WFP-VAM price data

Obs. Mean  St. Dev. Min Pctl(25) Median Pctl(75) Max

All Sample

Year 173,101 2,012.006 4578 1,992 2,009 2,013 2,016 2,019
Maize 173,101 0.376 0.484 0 0 0 1 1
Millet 173,101 0.216 0.411 0 0 0 0 1
Sorghum 173,101 0.218 0.413 0 0 0 0 1
Rice 173,101 0.191 0.393 0 0 0 0 1
Market-Crop

Lenght of Series 2,516 68.800 60.627 1 20.8 53 107 329
Min(Year) 2,516 2,010.331 4.824 1992 2,007 2,011 2,014 2,018
Max(Year) 2,516 2,016914 2.070 2,006 2,016 2,018 2,018 2,019
Average crop price (USD) 2,516 0.437 0.243 0.035 0.284 0.377 0.541 2244
Market

# Crops 978 2.573 0.940 1 2 2 3 4
Country

Number of Markets 31 31.548 23.511 1 13.5 25 46 87

maize, millet, sorghum, and rice (the set of crops with the largest temporal and spatial
coverage). I geocode each market with Google Maps to subsequently link them to the
grid cells by overlaying the former on the latter. Figure 1 shows the wide spatial
coverage of the WFP-VAM data for SSA.

Besides, Table A.2 documents summary statitics. The whole data consists of about
173 thousand data points, of which about 37 percent of maize prices (and about 20
percent of the other crops). The data contain about 2,500 market-crop series, on av-
erage covering 5 years (68 months) during the 2010s (on average, starting at 2011 and
ending at 2018). The data provides crop prices for 978 markets (for about 2 crops, on
average) across 31 countries. On average, countries have about 30 markets surveyed.

ITPD-E international trade data. The trade data used in this paper is obtained from
the ITPD-E database (Borchert et al., 2021). I collect all available bilateral trade flows,
in current US$, for all country-crops combinations of my study. Consistent with
good practice with trade data, I collect import flows rather than exports.”® Then, I
transform the trade data to monetary unit of my study (US$ PPP from G-Econ) as
follows. First, I calculate the share of trade flows, at the importer-exporter-crop-year
levels, over the GDP of of the importing country in each year, in current values. Next,
I average out the shares over the 2000-2010 period, so to avoid outliers in the year of

%The reson for that is the usual discrepancy between total import and exports at the country-pair-
product level. While import flows are registered between country of production and final country of
shipment, export data usually register intermediate countries on the trade chain as final destination,
biasing the trade flows (Veronese and Tyrman, 2009).
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Table A.3: Census waves for SSA countries available from IPUMS

Country 1960s 1970s 1980s 1990s 2000s 2010s
Benin 1979 1992 2002 2010
Botswana 1981 1991 2001 2011
Burkina Faso 1985 1996 2006
Cameroon 1976 1987 2005

Ethiopia 1984 1994 2007

Ghana 1984 2000 2010
Guinea 1983 1996 2014
Kenya 1969 1979 1989 1999 2009

Lesotho 1996 2006

Liberia 1974 2008

Malawi 1987 1998 2008

Mali 1987 1998 2009
Mozambique 1997 2007

Rwanda 1991 2000 2012
Senegal 1988 2002 2013
Sierra Leone 2004 2015
South Africa 1996 2001/07 2011/16
Sudan! 2008

Tanzania 1988 2002 2012
Togo 1960 1970 2010
Uganda 1991 2002 2014
Zambia 1990 2000 2010
Zimbabwe 2012

1Sudan stands for both Sudan and South Sudan, as both countries were the same in the baseline
period of 2000. The IPUMS data for these countries are available for the same year of 2008.

2000. Finally, I multiply the shares at the importer-exporter-crop level by the importer
GDP of G-Econ for the year of 2000.

International migration data. I obtain bilateral gross migration flows between SSA
countries from Abel and Cohen (2019)’s database. It is a comprehensive source of
data on gross migration flows between about 200 x 200 country pairs during 5-years
intervals from 1990 to 2015; I filter it for all SSA country pairs for 1990 to 2000.

Internal (within-country) migration data. I construct a bilateral matrix of internal
migration flows using census data obtained from the IPUMS International Project
from IPUMS (2020). Table A.3 documents the set o country-census waves available.
For each of these, I retrieve individual-level data on migration status and location of
origin (within the same country). The whole data set, of about 17 million data points,
is then aggregated at the subnational region pair level. I use the “Geography & GIS”
supplementary data sources in IPUMS to obtain the time consistent boundaries of the
subnational regions (or provinces, depending on the country — see fig. 1). That allows
me to calculate long-term changes in potential yields for each of these regions (for

tig. 3) or to match them to grid cells (to obtain total internal migration for Section 5.4).

Main populated places. I collect the coordinates of the main populated places of SSA
from the Populated Places data set from Natural Earth. It consists of a geo-referenced

50



dataset with the coordinates of about 90 percent of all cities, towns and settlements
in the World. I use it to set coordinates for each of the cells of SSA. If a certain
cell contains more than one location, I pick the one with the highest population. If
another does not have any location to obtain the coordinates, I set them to be the cell’s
centroid. If any of the centroids are not located in the mainland (e.g., ocean), I set it
to be the closest coordinate to the centroid that is on the mainland.

B Theory Appendix

B.1 The producer problem, shipping prices, trade probabilities, price

indexes, and consumption shares

Producers in the economy face a perfect competition. Hence, taking all prices as
given, a firm/farmer in i produce variety w of sector k choosing inputs Ll(a)) and

H¥(w) that, subject to production function Equation (1), maximize profits
pii(w)gf (w) — wiLf(w) — riHf (w), (B.1)

where pi-‘]-(w) is the price at destination/consumption location j. This standard Cobb-
Douglas producer problem, solved as a cost minimization problem, yields the follow-

ing unit cost of producing variety w in i:

=k %k

pi(w) = ——1—, (B.2)

where ¢ = a7%(1 — a)*~1. Hence, scaling Equation (B.2) with the bilateral iceberg
trade costs between i and a buyer location j, 7;;, yields the bilateral shipping prices
between locations in Equation (3). Moreover, the bilateral sectoral trade shares of
Equation (6) are equivent to

AL =P (pi-‘]- < I?;?{plsfj}) : (B.3)

that is, the probability that i is the cheapest supplier of sector k goods to destination

.7 The distributional assumptions on z¥ that conditional trade probabilities for a

> Note that sectoral varieties become symmetric conditional on productivities, which allows us to
disregard the w index and focus on the location pair-sector dimension.
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given price p, /\i‘]( p), are also distributed extreme value:

iy
Ai(p) =1 (P = pjj < min pi‘f) =TIP (#>p) =IT[1-G(p)] =€ 7", where
S7 S#i S#i

k—i _ k pk (o o ) 6k
P = ;bsAs (c Wers TS]'>
S#1

Following Eaton and Kortum (2002), integrating over p € R, yields Ai-‘]-:
k Y k
Aij = /0 Aji(p)dP (pij < P) dp

00 ki ¢ K ak (ko 1\ Tk g -
o Kk DFAK k. k _ _ _ k
:/ el P xel l(c Yl T”) P (=) po bk A <ckw?"r} “"Tg) dp
0

_ =
= b Ak (c‘kw‘;‘kril ""‘Tl-]-> “ /®k where (B.4)
3 1- —Ck
Pk = gbf A (et ) (B.5)
1€

Moreover, the CES utility over varieties with elasticity of substitution 7, < 1+ { Vk
yields sectoral price indexes at destination j as:

k 1 k 1-y Y1~k
Py = (/0 pj (w) kdw)

1/¢,
—I* (@;‘) ¢ , Where (B.6)

)

is a constant and I'(a) is the Gamma function. Note that Equation (B.6) is equivalent

to Equation (7); plugging it into Equation (B.4) yields Equation (6).

Sectoral consumption shares. These follow standard CES properties. Starting with

crops, workers at j maximize welfare with respect to crop consumption by solving:

max C; s. to Y. P]kC]lC <y ,
{Ci e k#K

where C; is (implicitly) defined in eq. (11), C;-‘ are the sectoral CES composites in
eq. (5), and u” is j’s expenditure share in agriculture (i.e., crops). Then, rearranging
the first order conditions yields C;.‘/ C;." = (P}‘/ P]k/> " Then, by defining E;‘ as the

share of j’s agricultural expenditure on crop k # K goods (and making use of the
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C}‘ / C}‘/ ratio), one obtains:

Pkck 1=y

ok _ i (pkypa) T

B = T prCF = <P] /P]> Vi, j,

WZx

where the last equation takes advatage of the definition of the agricultural price in-
dex from eq. (10). Note that, for the upper CES nest (choice between agricultural
and non-agricultural consumption bundles), the derivation is analogous but with the

additional income effect following Comin et al. (2021).

B.2 Derivation of migration shares

Take the definition of the welfare attained by a worker v living in i and moving to j
=0, T«

as Wij(v) = (wj/Pj)mi;lej(v), g~ Gj(v) =e ° ki, Following Eaton and Kortum

(2002), one can obtain the distribution of the welfare from one specific location i as

i Jw:) 0y LT
Aij(w) = P(Wyj < w) = Gi(wPiyj/w;) = e WP/ @)k

Thus, the joint distribution of welfare of all destinations s from i can be derived as

Al(w) — He—(wpsﬁ’lis/ws)_guslas_“ _ e—CDin_Q, where q)i — Z(Psmis/ws)_eusLs_“-
seS SES
Now, recalling the share of workers moving from i to j is equivalent to the probability
that the welfare attained by moving to j, w, is the highest among all other possible s

destinations, one writes
P —0
Hz’j(w) = H’(Wij(v) =w > max{WiS(v)}S#]) — H]P(Wz’s <w)=e > ixw?
s#j

With that, it is possible to obtain the unconditional probability I1;; by integrating over
all possible values of w € R, i.e.

I, = /0 ITij(w) dIP(Wy; < w) dw
o o R R—"
:/ e*‘b o « e(ijml]/w]) u]Lj X (_6)w79*1(P]-n_f[l-]'/w]-)*eu]'[_,]f“ dw
0
070,
(w;/ Py) i L

Sgs(ws /Ps)emigeusLs_“’

which is the equivalent of eq. (18).
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B.3 Spatial equilibrium

Given the geography G(S) and the parameters ® = {Q, 1k, Ya, €k, ¥k, Ck, 0,6, B}, a
spatial equilibrium is a vector of factor prices and labor allocations {wj, 7, L }jes such
that egs. (7), (10), (12) to (14) and (19) hold, and markets for goods clear. Formally,
market clearing requires trade-balacing, such that each j’s income equals total exports
to and total imports from all locations i € S, as in Equation (20). In fact, by using
eq. (14) on (20), one characterizes the spatial equilibrium with the following system

of 7 x N equations and unknowns:

1*')/51 1—0 ea—(l—U)

_ Pk p? ‘

k 1k (kK 1— K\ Sk j ] Y

oLy = 1 ) vhA (Thewftr! i/ Pf) (ﬁ) v <F> (F) bt
j

i€S k£K

e pK 1-0 0. ex—(1—0)
+ ) brAf (rKc-Kw;?‘Kr}—“KTij/p]K> 0K PL> <F]> viL; (B.7)
i€S J ]
1
k (k)17 03 1o o
— —0 3
p={ Y <Q (PF) > (o) (B.8)
ke{a,K}

—1/8
- 1- Sk =
p}‘=F"<Z AT (it ) ) O (L) " e

icS
(v;/ P\ fu; L% 7K
i/ Fy) mgmuik;

L: = il x 19 (B.10) ©vj = w;j + (T]H) /L] (B.13)
] ZEZS gs(vs/PS)"m;‘)usL;“ !
s
P o ok 1-0 ex—(1—0)
Wi =05 (PE/B) (o/P) (B.11)

Existence and Uniqueness. My model is not isomorphic to the general set up of
Allen and Arkolakis (2014) and, as a consequence, the existence and uniqueness of
the equilibrium cannot be guaranteed under their conditions for such. The reason
for that is the additional non-linearity introduced by the middle- and upper-level CES
structures. I address that by solving my model for several parametric choices, starting

from many different initial guesses. The solution is invariant across all cases.

B.4 Numerical algorithm for solving the model

I find {w;,7;, L;}jcs that solves for the spatial equilibrium characterized by the system
of equations (B.7) to (B.13) with an algorithm that nests three loops in one another.

Inner loop. I start with a guess for {wj, r;, L;}; and solve for sectoral price indexes in
egs. (B.9) and (B.12). Then, with a guess for {P;};, I iterate over egs. (B.8) and (B.11)
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to find a simultaneous solution for {P;, ;t;-‘ }jk- In particular, with the guess for {P;};,
I solve for {y}‘}k in eq. (B.11), replace it on eq. (B.8) to update solve for {P;};, and
iterate until both solutions converge.

Middle loop. I use the solution for {P]k, P!, P, y;‘}j,k and the guesses for {w;,7;, L;};

in eq. (B.13) and (B.7) to update {w;, rj}j.58
Outer loop. I use the solution of {wj,;, P;}; and the guess for {L;}; in eq. (B.10) to

obtain an update for {L;};, iterating it until the solution converges.

I then replace the solutions for {w;,7;,L;}; back in the inner loop and repeat the
procedure above until all solutions converge to a fixed point.

B.5 Details of the economy represented as line

The illustration of the model mechanisms in Section 4.2 represents the economy as
a line with a discrete number of locations. To make the exposition of these mech-
anisms the cleanest possible, I make the economy as homogeneous as possible in
many fundamentals, like amenities and land endowments. For the latter, I take a fur-
ther simplification step: I disregard land as a factor, which implies that labor (wages)
is the only factor (rent) in the economy.”® Hence, to make the consumption choices
of agents consistent (and more transparent) with new setting, I change the lower CES
tier to a pure Armington set-up where the CES for local varieties, 7, disciplines the
trade elasticity of the economy.®”

B.6 Model quantification

I quantify the parameters and fundamentals related to technology and location choice
in two different steps, each consisting of a two-stage procedure.

B.6.1 Technology

Conditional on parameters from the literature and fundamentals observed from the
data, this step quantifies t = {Tll]: ,6} and T = {{AK};, {65}, {Q0, Qk}} with a two-
stage procedure (with the inner stage nested on the outer). Specifically, the first stage
(inner loop), guesses values for t and quantify T by inverting the general equilibrium
conditions of the model. Then, the second stage (outer loop) estimates t with a GMM

8For that, I use the Cobb-Douglas fixed proportion of factor bills. For the case of labor rents, that
implies w;L; = Y tka;-‘, which can be solved for w; (X]l‘ is the right-hand side of eq. (B.7)).

1n practice, it implies weaker dispersion forces vis-a-vis the full-fledged model.

60That is, /\;‘j = (pi?j/ P]k ViIk = (wé‘rij/ A;‘P]k)ﬂk, while equations (B.7) to (B.13) remain nearly identical.
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that targets model-generated moments to their data counterparts conditional on the

tirst stage.

Inner loop. With a guess on 1, it finds T = {{AX},, {bF}, 4, {Qa, Qk}} such that make
the model perfectly match, respectively, the spatial distribution of nominal income
{vjL;};, the spatial-sector distribution of production {X]’.‘}j,k, and the aggregate sec-
toral expenditure ratios XX/X“. The model counterpart of these moments are:

vLi=Y Y Ak Efpfoili+ Y AfufoL (B.14)
ieSk#K i€S
ZAfl”fyfv L; Vk#K (B.15)
i€S
Z)‘]z‘”] (B.16)
i€S
Y YAk
Xg/X JE51es pre (B.17)
K = .
Y L L MERu,
k#KjeSieSs

Then, one can invert each of the equations above to obtain the expressions for the
unobserved fundamentals of interest. For instance, for {A]K }, one inverts eq. (B.14)

to obtain:

=G
oLy = ¥ Y AE oL+ X EAK (15ekufsrt -, /o) kot

i€S k#K i€S I
v;Lj— Ezs &K Aﬁaﬁmgvlg
AK = : . (B.18)
K
£ (et o)

Importantly, I do not observe factor prices {wj, r;}; from the data, but rather nominal
incomes {v;};, sectoral production {X¥},;, land endowments #, and sectoral alloca-
tion of land {Hf‘}i,kf’l With that, I obtain {w;, r;}; with:

XK =rHK/ (1 —ag) —

= XK'x (1 —ag) /HK, and (B.19)
v;L; = w;L; +r;H; —
w; =v; — (r;H;) /L;, (B.20)

where eq. (B.19) comes from the fixed factor proportion from the Cobb-Douglas pro-

611 measure sector-cell-level data on land usage { H }ik also from GAEZ. Specifically, I retrieve har-
vested land for all crops of my settmg by overlaymg (and aggregating) my grid into the GAEZ har-
vested land data. Then, I obtain H = H; — Yk Hk Vi.
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duction function.®®> Then, analogous to eq. (B.18), I invert eqgs. (B.15) to (B.17) with:

-1
—&
b;.c: x|y Ak (chk ak]l o, /p3<> ”i‘y}lvz ] Vk£K  (B21)
€S
~1
&
pK — ZAK <FK‘KZU”‘K1’]1 D‘KTJZ./PI.K> ‘u]KvlL] (B.22)
o B B D AEE (/R /B ol
k#KjesieSs
O/ = 15 % — — (B.23)
ES ezs/\ﬂ (PE/P)" " (vi/Py) v;L;
] 1

The inversion algorithm finds { AK, {b;‘ }ik Qk/Qa} such that egs. (B.18) and (B.21)
to (B.23) hold simultaneously. However, because {bJK} jand {AJK} j cannot be separated
out in levels, I normalize the latter to one and identify their product in eq. (B.22). That
also gives me tractability, as then eq. (B.18) is not needed anymore for inverting the
spatial equilibrium.®® To solve this high-dimensional problem, I proceed as follows:
with a guess for {b;.‘}j,k, I solve for Qg /Q)y, in eq. (B.23). I then plug the solution in
eqs. (B.21) and (B.22) (embedded in {]/t;‘ }ix) to solve for {b;'(}j,k- I iterate it until all
solutions converge; I represent it, conditional on a guess for t, as z (T; t) = 0.

Outer loop. Conditional on z (T; t) = 0, I estimate t = { ,0} with a GMM. For that,
I design moments that provide the identifying variation for the parameters of interest
and that are observable in the data. Specifically, these are:

=1L ) ) X an (B-24)

¢ iecjec k

YjkeD (P - P)
N(D) ’

27 1/2

My = (B.25)

that is, aggregate export flows and the dispersion (standard deviation) of sectoral
price indexes.® Note that m; provides the required variation for identifying due to
the (intuitive) decreasing relationship between bilateral trade flows and tariffs tF (i.e.,
larger tariffs, less international trade). Moreover, the identification of J relies on the
positive relationship between trade frictions and price dispersion in m,. That is, the

®2Importantly, all monetary values, built from the data in US$ PPP units (see Section 2), are further
normalized to the wages of the first location wj. This is done as I am not able to pin down levels in my
quantification, but instead the spatial distribution of fundamentals up to a normalization.

83In particular, that equation holds by construction if egs. (B.21) and (B.22) hold simultaneously.

®4Note that D is the set of location-crop combinations for which the WFP-VAM data provide data
for. Moreover, N(D) and P are the size and mean of this set, respectively. Analogously, m; is calculated
with the country pair-crop combinations with export data available from the ITPD-E trade data.
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lowest J, the lower the degree of trade frictions in the economy and, as a consequence,
the more homogeneous would price indexes be across space (hence, less dispersion).
Importantly, the WFP-VAM price data provides time varying data between 2000 and
2018; I discuss how I decompose these location-crop time series so to match the static
feature of my model (and thus, sectoral price indexes {P]k }ix) in Appendix B.7.

I estimate t by defining m = [my, m,] and g (t) = [m(t) — m92%] and solving for t
that, based on E [g (t)] = 0, satisfies:

t=arg min g (t) Wg (t)" subject to z (T;t) =0, (B.26)

where W is the weighting matrix.®> T solve for t with a bidimensional grid search
over TF and J values and infer standard errors by bootstrapping it ten thousands
iterations.®® Table 2 documents the estimation results.

Besides, Figure B.1 Panel A plots the grid search results (with the log objective
function g (t) Wg (t)’ evaluated at different § and ¥ pairs). It shows a non-linear rela-
tionship between the two parameters and the objective function, as well as a “valley-
looking region” along the diagonal where the solution lies on.” Moreover, Panels C
and D show slices of the objective function evaluated for a fixed 6 or TF. They convey
the relevance of the designed moments in terms of providing identifying variation
for the parameters of interest. In particular, Panel D shows that, for a given TF, the
objective function is U-shaped along the § dimension (and hence that the relationship

between J and price dispersion is monotonic, as expected).

B.6.2 Location choice

I proceed with an analogous two-stage step where T = {u;, m.}; . and t = ¢.

Inner loop. It solves for {u;}; and {m.}. conditional on all previsouly quantified
parameters and fundamentals, a guess for t, and the observed following endogenous
variables: population {L;}; and country-level total inflow of foreign migrants, {L.}.
(from Abel and Cohen, 2019, between 1990 and 2000, where 1990 is the earliest period
available for SSA). In practice, I use eq. (19) to calculate L. and invert it to obtain an

expression for country barriers as a function of L. and other endogenous variables

6] choose W to be the identity matrix due to the high non-linearity of my moments (thus, the
complexity of their Jacobian and Hessian matrices).

6Grid search methods can easily lead to curse of dimensionality and global-local optima issues.
However, my model requires that tariffs and trade costs are both non negative; which restricts the
parametric space for the search. I also rule out global-local optima tradeoffs by running a coarse search
over large intervals and then narrowing down the search within the minimum of this coarse search.

’Importantly, it shows the result of a fine search around an area that, from a coarser search, is
identified as the global optimum region (see footnote 66).
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and fundamentals as follows:
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Note that the denominator in the equations above is equivalent to eq. (19)’s — it sepa-

rates the inter/intranational bilateral choices to illustrate the identification of parame-
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ters later on. Analogously, I invert eq. (B.10) to pin down amenities {u;}; as a function

of population distribution and other endogenous variables and fundamentals:

(v5/Py)" m?

u=1L: X el Lo+
: : iecz(j) Y. (vs/Ps)9 m;eus + ¥ (US/PS)9 m;em;(g)us 0
s€c(f) s¢c(j)
v;/P; m 1m0 -1
)3 (y/B) 0 Lo (B.28)
igc(j) X (vs/ Ps)’ mfus + Z (vs/ Ps)’ m;0m (9)u
s€c(f) s¢c(f)

I solve eqgs. (B.27) and (B.28) as follows: with a guess for {u;};, I solve for {m.}.
in eq. (B.27), plug it in eq. (B.28) to solve for {u]-}]-, and iterate it until all solutions
converge. Importantly, I am able to separate out {u;}; from {m,}. because location
pairs can refer to either intra or international migration. That is, conditional on a
guess of {u;};, there are distinct origins s for which a destination j stand for one type
of migration of the other (the denominator of eq. (B.27)), and thus where amenities
multyplies or not the country migration barriers {m,}.. Considering all possible or-
gins s and destinations j in S, there is at least one pair for which they do and do not
multiply one another, which then allows me to separately identify them.

Outer loop. The outer loop estimates t = ¢ similarly to Equation (B.26) but finding
¢ such that the model-generated internal migration flows, LD = Y. Yjec Yiec Lijs
matches the observed internal migation flows between 1990 and 2000 from IPUMS.%®
Figure B.1 Panel B shows the results of the grid search, displaying the intutive de-

creasing relationship between ¢ and internal migration in the economy.

B.7 Mapping the time-varying price data into the static model prices

A challenge to link the sectoral prices {P]k }jx to their empirical counterpart from the
WEFP-VAM data is the ”static-dynamic mismatch” between them: while the former
is static (due to the static aspect of the model), the latter is time-varying (due to the
long location-crop price series available for numerous locations across SSA). The most
immediate approach to overcome it is restricting the price data within a time window
that is the closest to the baseline period of my quantification, the year of 2000.

This approach implies two drawbacks. First, it restricts the data to a narrow sub-
set with a poor geographical coverage. Second, and most importantly, it incorporates
location-crop-time specific shocks at that specific period that could pollute the result-
ing aggregate price dispersion used in Appendix B.6.1.% To avoid that, I propose a

%Hence, C is the set of countries for which migration data is available in IPUMS.
% For instance, spatially heterogeneous incidence of droughts by 2000 (or before) could inflate the
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time series decomposition approach that, by exploiting the long longitudinal charac-
teristic of each location-crop series, nets them out of these shocks and retrieves a time
invariant, location-crop component that maps into {P]k }ik-

More specifically, I first aggregate the market-crop-level price series at the grid
cell-crop level by averaging crop prices across markets that belong to the same grid
cell. While in principle this could add noise to the data, in practice the observed prices
across markets evolve quite homogeneously in levels and trends within grid cell-crop
pairs. Figure B.2 Panels A and B illustrate that for markets located at a common
grid cell, one in Mali and another in Malawi, respectively. I define these observed
location-crop-time (year-month t) price series as P}ft and assume it evolves as:

— pk
_P].

pk k k
Pj,t =dacj) ¥t + bc(j)xm(t) + ¢ Ty (B.29)

where a, ;) X t is a set of country-specific time trends that account for secular evolution
in crop prices that are common for all markets j in the same country ¢(j). Moreover,
be(jyxm(r) are country-month of the year (e.g., January or February) fixed effects that
account for country-specific ciclicality on crop production and prices. Finally, c;? = P]Z‘
are location-crop fixed effects that absorb the common j x k component of the price
series. Hence, it is the empirical counterpart of the theoretical prices {P]k }ik: it con-
tains the time invariant, location-crop specific component of prices at each observed
j X k combination (net of the shocks over their time series).”?

I estimate Equation (B.29) with the WFP-VAM price data and retrieve CA;( as the
observed {P]k }jk- Figure B.2 Panels C and D illustrate the result for the two locations
j in Mali and Malawi (from Panels A and B, respectively). They also contrast 6}‘ to
a naive approach of averaging out prices along the grid cell-crop dimension ("Mean
prices”). Because of the increasing trend in prices over time, averages are upward
biased vis-a-vis 6;-‘ (that account for this secular trends). In fact, some 6;? have negative
values — while counterintuitive if thinking of negative prices, this makes sense for the
purpose of my exercise (that aims at exploiting (spatial) within-country differences in
prices). Hence, not accounting for the components in Equation (B.29) overestimates
the magnitude of prices. That would, in turn, underestimate the aggregate dispersion
of prices across space and, as a consequence, the estimated .

observed price dispersion, hence underestimating J.

"Importantly, idiosyncratic shocks to prices — such as weather shocks — are accounted for, but with
the underlying assumption that they are normally distributed and have expectation equal to zero (in
the error term s’]f,t) at the j x k level.
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Figure B.2: WFP-VAM raw data, matching to grid cells, and price decomposition

Panel A: Markets in the same grid cell in Mali ~ Panel B: Markets in the same grid cell in Malawi
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Notes: Panels A and B plot two samples of crop prices in markets within common grid cells (in Mali
and Malawi, respectively). Panels C and D show how the grid cell-level average (i.e., across markets

within grid cells over time) crop prices are decomposed into a location-crop time invariant component
c";.‘ = P;‘ and contrasts it to the unconditional mean along each j x k time series ("Mean prices”).

B.8 Discussion of the parameters taken from the literature

Lower CES tier. The values taken for {7}, come from Costinot et al. (2016) and
Bernard et al. (2003) for crops and non-agriculture, respectively. These values are
widely used in other applications in the literature (e.g. Desmet et al., 2018, for yk).
They nevertheless are estimated in global (or cross-country) settings. Assuming differ-
ent values for {7}, (say, substitution of varieties within countries being more intense
than across countries) would mainly affect the model-generated trade flows, and con-
sequently the levels of the parameters associated to trade frictions.

Middle CES tier. The value v, = 2.5 comes from Sotelo (2020), who studies rural
Peru by early 2000s and focus on intranational trade in that country. Thus, it stands
for a context similar to rural SSA as of 2000.

62



Upper CES tier (and () shifters). The values for {¢;} and ¢ come from the global
estimation of Comin et al. (2021) (and are particularly close to Nath (2022)’s estimates).
These values therefore reflect preferences between agricultural and non-agricultural
goods from a global representative consumer. Thus, the values can underestimate the
subsistency aspect of agricultural goods in SSA, where the negative slope of the Engel
curve could be steeper vis-a-vis the rest of the world. If so, then, my results would
underestimate the welfare losses associated to that mechanism. In fact, the estimated
{Q%}ox reflects that: I quantify a relative (),/Qg that is about twice the estimates
from Nath (2022) for the global economy, reflecting that expenditures in agriculture

are much more pronounced in SSA visa-vis the global economy.”!

B.9 Discussion of the estimated trade and migration frictions

In what follows, I benchmark trade and migration frictions quantified in Section 5
with estimates from related literature. This exercise is relevant due to the different
approaches from these studies (in terms of functional format or units of distance),
which hinders a direct comparison between their estimates and mine. When compar-
ing them, I also stress the reasons and advantages of my modeling choices.

Trade frictions. Many studies estimate the relationship between distance and trade
frictions for developing contexts (e.g. Donaldson, 2018; Sotelo, 2020; Pellegrina and
Sotelo, 2021; Pellegrina, 2022). Importantly, most of these parametrize trade costs
with an exponential format; e.g., log(7;;) = J x dist(i, j). Moreover, some use differ-
ent distance metric — such as travel time. Hence, to compare my trade costs estimates
to related studies, I use the functional formats and estimates from Donaldson (2018)
and Pellegrina (2022) (for India and Brazil, respectively) to calculate and benchmark
their resulting 7;; to mine (i.e., with dist(i, j)*!°). Figure B.3 Panel A documents their
differences visually. It shows that, for small distances, my estimated T;; lie between
Indian and Brazilian estimates. However, as distances increase, these estimates (ex-
ponentially) exceed mine. In fact, for extremely large distances (between, say, the
North-South extremes of SSA), the resulting 7;; becomes unreasonably large (which
generates numerical problems, such as close-to-infinite prices in the economy). My
functional format, instead, is tailored for continental empirical settings like mine, con-
veying reasonable values T;; for small (i.e., within country) distances that smoothly

increase with (large) distances.

Migration costs. I analogously benchmark my estimated m;; = dist(i, )% to val-

ues from Indonesia, Brazil, and the US (from Bryan and Morten, 2019; Morten and

n particular, I quantify ),/ Qg = 1/0.16 = 6.25, while Nath (2022) estimates a relative agriculture
and manufacturing shifters for the global economy of 11.73/3.7 = 3.2.
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Figure B.3: Equivalence between the quantified (trade and migration) frictions and
related estimates from the literature.
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Notes: Scatter plots of the estimated trade (Panel A) and migration (Panel B) costs from Section 5
against estimates from the literature.

Oliveira, 2018; Allen and Donaldson, 2022, respectively). Figure B.3 Panel B shows
the results: my median SSA estimates are about 20 percent larger than the median
estimates for Indonesia, and about three to four times larger than those for Brazil and
the US, respectively. Moreover, the (exponential) increase in the migration costs for
larger distances is also visible, though not as pronounced as for trade costs (however,

these patterns hold for continental distances between geographical extremes of SSA).

B.10 Discussion of the inversion results

Figure B.4 illustrates the spatial distribution of some of the quantified fundamentals.
Panel A and B show that more productive locations (which have higher real wages)
have higher fundamental productivities in the K sector. Thus, the model rationalizes
that, net of the variation in the K — 1 sectors, locations with a high level of economic
activity must be very productive in non-agriculture. This pattern stands out in some
capitals and in high-GDP countries, such as South Africa. Panel C illustrates an
analogous aspect of the quantified sectoral shifters of cassava. There are high {b¥};
values for locations in countries that are large cassava producers, such as Nigeria.
Moreover, Panel D and E show that high-amenity locations have relatively high
population density and very low real wages. DR Congo and Zimbabwe are two
examples. Their higher amenities are utility compensations that explain why individ-
uals are not living somewhere else in SSA. Intuitively, this captures local cultural or
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Figure B.4: Comparison between the calibrated fundamentals and the observed en-
dogenous variables
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institutional characteristics that work as pull factors (which will be kept constant in
the counterfactuals).

However, these characteristics do not include migration frictions, since they are ac-
counted for separately in my framework. To illustrate, Panel F plots the distribution
of the quantified country-level migration barriers, i.e. {m.}.. High-barrier coun-
tries display two characteristics: higher income differentials relative to neighboring
countries and relatively low inflows of migrants. Sudan and South Africa (which are
geographically close to DR Congo and Zimbabwe, respectively) illustrate this. Their
relative income differences (with respect to their surrounding countries) are dispro-
portionally larger than the observed total flow of immigrants, which implies higher

migration barriers.”?

B.11 Details on the backcasting exercise for 1975

The backcasting exercise consists of solving for the spatial equilibrium of the SSA in
1975. In particular, it uses the calibrated model for 2000 and replaces two fundamen-
tals that reflect the reality of the economy in 1975:

Population. I calculate and estimate of the initial population in 1975 by projecting
the distribution of the observed population in 2000 into the levels of the SSA popula-
tion in 1975. The reversibility of the spatial equilibrium follows Desmet et al. (2018),
who characterize the possibility of backcasting exercises such as mine (i.e. validating

spatial models calibrated in a cross section).

Crop yields. I replace the fundamental productivities {A;‘} k+k used in the calibration
with the values of 1975. Importantly, during the period there was already climate-
driven changes in these productivities so that the model can generate climate migra-
tion (Figure B.5 illustrates that). Finally, the validating exercises consists of comparing
the model outcomes with observed population data for 1975. Because the data source
of the latter (GHSP, Florczyk et al., 2019) differs from the source of population data
used in the calibration (G-Econ, Nordhaus et al., 2006), I check the consistency of
these two datasets for the period of 2000 (for which data in both sources is available)

in terms of grid cell- and country-level population correlation in Figure B.6.

72A second mechanism explaining the variation in country barriers is the absolute variation in mi-
gration flows. Countries with low migration flows, even if at the left of the real wage distribution,
must have, at least to some extent, relatively high migration barriers. The reason for this is the id-
iosyncratic component of workers’ preferences, which generates some migration that must somehow
be rationalized.
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Figure B.5: Percentual changes in average crop potential yields within locations in the
past and estimates for the future
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Notes: Panel A: Within grid cell changes (%) in crop suitabilities between 1975 and 2000. Panel B:
Analogous changes between 2000 and 2080 (under climate change). Note that the scale between Panels
A and B are different to facilitate visualization (they imply that the effects between 1975 and 2000 are

much less pronounced than the expected future effects).

Figure B.6: Correlations between G-Econ and GHSP datasets for the year of 2000
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B.12 Details on the calibration with EU data

I take the model to EU data so to retrieve the levels of the tariffs and country barriers
paramters T}; and {m.}.. To do that, I build a likewise rich spatial dataset for the EU.
I use the same sources described in Section 2, as all of them have a global coverage.
Subsequently, I link that data to my model with the procedure described in Section 5.
Importantly, when doing so, I use the same preference parameters and elasticities to
bilateral distance,  and ¢. Thus, my quantification for the EU embeds the differences
between cross country trade (or migration) in EU and SSA in the policy parameters
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7 (or {mc}e).

Finally, when replacing the EU policy parameters into the SSA counterfactual, I
must match the country level EU parameters {m.}. to SSA countries. I do that by
quantiles. That is, I assign the country barrier value for the bottom decile of the EU
sample to the countries in the bottom decile of the SSA county barrier distribution,
as so forth for the other deciles. Importantly, to make the levels of {m.}. comparable
across EU and SSA, I normalize the former as a ratio with the minimum. Thus, I in
practice simply scale SSA’s country barriers in relatives (e.g. the ratio between the
least and most strict country) so to reflect the relative ratios of the EU barriers.

C Alternative models

C.1 Agriculture as a unique crop

The model with a unique crop is identical to the model of Section 4. However, by
assuming a unique crop (K = 2), there is no subsitution within agriculture, so that
the middle CES tier vanishes (i.e. Ejl =1 and P].” = P]-l for all j). To take this model
to the data, I model the unique crop as an aggregate of the 6 crops. In particular, the
agricultural fundamental productivity {A;‘ k2K is a cross-crop average of the within
grid cell productivities (and likewise for the 2080 estimates). Moreover, the crop

expenditures used in the baseline quantification are the sum of the single-crop case.

C.2 Extension with the rest of the World

I allow for trade and migration between SSA and the ROW by modeling the latter as
a single, representative location R. As such, I use the same data sources and methods
in Sections 2 and 5 to link this extended model to global data and perform counter-
factuals as in Section 6, but assuming that the ROW is unaffected by the climate.”>”*

Assuming so facilitates remarkably the quantification of this extended setting. The
reason is that it rules out the necessity of separating shifters {b%}; and fundamental
productivities { A% }1 for the ROW (as they will be all kept fixed in the counterfactu-
als). Hence, the quantification normalizes bk A% = 1 for all k and pins down {b;‘ }itRk
in relative terms to the ROW. In terms of trade frictions, I assume dist(i, R) as the

distance to the nearest port and, for simplicity, § = 0.156 and t; = ©% = 8.2. For

73In terms of data, the process is simple. For instance, land endowments (or population) for R are
simply the sum of the land area (or population from G-Econ) in all locations but the SSA grid cells.

74The reasoning behind this assumption is that, over the course of the decades until the end of the
century, the ROW could be able to adapt to the agricultural productivity shocks from GAEZ such that,
on average, its productivity would be unaffected.
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migration costs, I also use the port distances and the quantified ¢. However, to keep
a consistent quantification of country migration barriers {m.}., I aggregate all gross

migration flows from SSA to the ROW to pin down mg.”

C.3 Homothetic preferences

I simulate the climate change effects in SSA with homothetic preferences by setting
0 = 4 (as in Bernard et al., 2003) and €, = 1 — ¢ for all k € {a,K}. As such, the
income effect on Equation (13) cancels out and only relative sectoral prices matters
for sectoral expenditures. That is, Equation (13) becomes isomorphic to (9). I link this
model to the data with the same procedure as in Section 5 and, with the quantified

model in hand, perform a counterfactual as in the baseline of Section 6.

C.4 Endogenous fertility

I endogenize fertility, with respect to climate change, with a simple damage function
that assumes that the projected grid-cell-level initial population for 2080 is affected by

the average change in local crop yields. Formally:
70 0

where AA; is the average crop yield change in j (as in Section 3) and ¢ a shitfer
that maps the latter into fertility changes. When doing so, the initial population of
SSA L reduces if compared to the baseline case. In particular, it decreases more
in the locations and countries that are most affected by climate change. Thus, in
distributional terms, the initial population of SSA starts sligthly better distributed,
which leads to lower climate migration flows. However, these level differences are
not too strike; hence, the aggregate effects of climate change are not stark vis-a-vis
the baseline. The fertility robustness results of Table 6 use ﬁ? and ¢ = .5 in the climate
change simulations. As of completeness, Table C.1 below document how these results
are sensitive to the choice of .

C.5 Economic growth

I account for economic growth in my simulations by scaling up the non-agricultural
productivities {b}KA]K }; with country-level projections of GDP growth. For that, I first

>The quantified {m,}. with the ROW illustrates the degree of real income spatial disparities between
SSA and the global economy. Specifically, the quantified mpg is thousands of times larger than the
maximum of {m,} c£Rs reflecting that, through the lens of the model, these barriers must be substantial
to explain the observed migration choices conditional on real income differences.
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Table C.1: Robustness of the endogenous fertility exercise with respect to ¢

M () ®)

Climate migration A GDP per A Non-agricultural

(million individuals) capita (%) employment (%)

Endogenous fertility « = 0.1 14.06 -0.07 -0.10
Endogenous fertility : = 0.25 13.98 -0.07 -0.10
Endogenous fertility : = 0.5 13.80 -0.08 -0.10

retrieve the GDP growth rates at the country level between 1980 and 2020 from the
World Bank Development Indicators. Next, I calculate the country-level cummulative
rate in this 40-years interval and use its square as the 80-years projected rate for each
country. Figure C.1 Panel A shows the results. Most countries experience a two- to
fourfold increase in productivity (and some up to a tenfold increase).

Importantly, Figure C.1 Panel B shows that the {b]KA]K }; distribution in the two
cases barely changes. This is due to the large spatial level differences in the quantified
{b]KA]K} j some in the order of millions.”® Hence, even if accounting for tenfold growth
in some countries, the {b]KAf }; distribution, as well as the climate change simulation
results in Section 6.4, remain little affected.

C.6 Climate damage on non-agriculture

I consider climate change productivity effects on non-agriculture by scaling {b]KA]K }i
with a damage function that maps climate conditions to the latter. For that, I borrow
the non-agricultural gK(T]) damage function from Conte et al. (2021). It is a bell-
shaped function, quantified at a global scale, that maps local temperature, in Celsius,
into a shifter between zero and one. I collect temperatures by the early 2000s and esti-
mates for the end of the century, also from Conte et al. (2021), to calculate a AgX(T;). I
use the latter as the non-agriculture damage function that scales { b]KA]K };- Figure C.1
shows the result: there are large spatial differences in the expected changes in non-
agricultural productivities (Panel C) but, for the same reason as in Appendix C.5,
that does not affect drastically the relative productivities across space (Panel D) and,
likewise, the climate change results.

C.7 Climate damage on amenities

I allow for climate change impacts in life quality through a damage function that af-

fects amenities {u;};. For that, I borrow the amenity damage function Ab(Tj) from

76That is so due to the likewise large differences in real income per capita across SSA, that my quan-
tification method (conditional on crop productivities and production) interprets as large differences in
fundamental non-agricultural productivities {b]K A]K }ie
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Figure C.1: Changes in the fundamentals for robustness checks
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Cruz and Rossi-Hansberg (2023). It provides a non-linear relationship between tem-
perature changes and amenities, quantified for the global economy. I combined it
with the expected temperature changes previously calculated (appendix C.6) to re-
trieve theses changes, illustrated in Figure C.1 Panel F. Similarly to Appendices C.5
and C.6, that barely affects the distribution of amenities across SSA, and hence the
result of the simulations in this setting.

D Additional results

D.1 Motivating facts: additional results and details

The following provides formal support for the Facts 2 and 3 of Section 3 on the
correlations between potential crop yields and production, trade, and migration.

Country-level production. I investigate the relationship between country-level crop
production and crop yields estimated with:

log(crop productiont) = a x log(A¥) +a; + bF + ¢, (D.1)

where A¥ is the country i average yields of crop k. Including country a; and crop b¥
fixed effects implies that the variation that identifies «, the parameter of interest, is at
the country-crop level. Hence, a positive & is evidence of specialization in production
across countries, i.e., countries producing the crops that they are, on average, more
suitable for, according to the GAEZ potential estimates. Table D.1 Column 1 shows
that this is the case, as in Figure 3 Panel A: a 10 percent increase in average country-

crop potential yields is associated with a 7 percent larger production of that crop.””

Within-country specialization. Table D.1 Column 2 provides additional evidence
of specialization in production, but within countries. That is, it shows the regres-
sion results of Equation (D.2) on grid cell-level crop production and potential yields.
Important, this setting allows for country-crop fixed effects. As a consequence, the
variation that identifies « is within-countries: grid cells producing the crops that they
are more productive at vis-a-vis other locations within the same country. The results
in Column 2 corroborate this hypothesis, with an estimated within country elasticity
of production of about 4.5 percent.

""Importantly, the effective production data is retrieved from national statistics (FAOSTAT). Hence, I
exclude an eventual mechanical correlation between production and potential yields that could arrise
if building country-level production data by aggregating cell-level data from GAEZ.
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Table D.1: Correlational results between potential crop yields (changes) and production, trade, and migration

log(production) log(bilateral tradef ) Internal mig;; International mig,.
@ @ ()] @ ©) ©) @) ® ©)

log(potential yieldsf) ~ 0.735**  0.044**
(0.339)  (0.019)

log(relative yields,) 0.433**  0.300* 0.317*
(0.183)  (0.154) (0.166)
A relative yields (%) 1.859 2.562 3.664 6.151
(6.550) (6.537) (47.624)  (83.191)
Bilateral distance —0.001%** —0.012%** —0.805**
(0.0001) (0.004) (0.336)
Country FE Yes No No No No Yes Yes No No
Crop FE Yes No Yes Yes Yes No No No No
Country-crop FE No Yes No No No No No No No
Origin-destination FE No No Yes No No No No No No
Origin FE No No No Yes Yes No No No No
Destination FE No No No Yes Yes No No Yes Yes
Observations 194 8,136 352 352 352 4913 4913 324 324
R? 0.521 0.876 0.840 0.538 0.589 0.361 0.367 0.074 0.236

Notes: “p<0.1; **p<0.05; ***p<0.01.
Bilateral crop trade. I verify the hypothesis of specialization in trade by estimating;:
log(X*,) = a x log(A¥/ A%) + a0 + V" + €, (D.2)

where X*, is the bilateral crop k trade flows from country c to ¢’ from the ITPD-E trade
data by the early 21st century. Moreover, AX/ A’C‘, are the exporter-importer relative
crop k potential yields calculated from the GAEZ estimates in 2000. By introduc-
ing importer-exporter fixed effects, I absorb all fixed characteristics at this dimension
— including bilateral trade resistence elements such as bilateral tariffs — and exploit
variation at the country pair-crop level. The positive a (Table D.1 Column 3) implies
that, conditional on a importer-exporter pair, a 10 percent increase in the relative (ex-
porter over importer) average yields of a specific crop is associated with four percent
higher exports of that crop. Consistent with Figure 3 Panel A, this elasticity is about
40 percent lower than the one of specialization of production (Column 1).
Subsequently, I use this framework to investigate the role of geographical distance
as a bilateral trade resistence. Specifically, I replace the a.. fixed effects with a set of
separate importer and exporter fixed effects in Equation (D.2). The resuls (Table D.1
Column 4) are much less precise, but close to the former estimate in magnitude. I
then add to this model (column 5) covariates at the importer-exporter level: bilateral
distances (between capitals). The « estimate remains considerably stable, suggesting
that non-tariffs trade barriers, such as distances, might not be as strict, as bilateral

resistence between countries, if compared to tariffs.
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Internal migration flows. I then verify whether changes in crop potential yields, over

time, associate with observed internal migration flows. For that, I estimate
Lijj = a X Arelative yieldsij + a.(;,j) + population; + ¢;;, (D.3)

where L;; is the total number of migrants between subnational region i to j observed
in the IPUMS data (that is, from the early 1970s to early 2010s). Along the same lines,
Arelative yields;; is the percentual change in the relative (destination over origin)
average yields between 1975 and 2000 from GAEZ. Equation (D.3) also controls for
population at origin and country fixed effects.”®

The results in Table D.1 Column 6 provide evidence of relative potential yields as
a push factor of migration (i.e., & > 0). The point estimate has little power and small
magnitude.”” However, adding origin-destination bilateral distances as a covariate
(Column 7) improves that and delivers an economically meaningful message. The
& estimate increases in magnitude by about 40 percent, suggesting that geographi-
cal distances are an important aspect underlying migration choices within countries.
Moreover, the precisely estimated negative coefficient of distance aligns with the idea

that internal migration becomes more costly for destinations that are further away.

International migration flows. I conclude with an analogous investigation for inter-

national migration with:
L.o = a X Arelative yields,, + a, + population, + €./, (D.4)

where L. stand for thousands of migrants from country c¢ to country c’. The results
(Columns 8 and 9) convey a similar message: international migration in SSA did
respond to changes in crop yields in the past decades, and more so for the countries
that are geographically close by.

78Ultimately, I control for population at origin by using migration flows per thousand inhabitants at
origin in the regressions.

79This is not surprising given the high urbanization rates experienced in SSA (which does not need
to be necessarily driven by changes in relative yields at destination but rather other forces driving
structural change).
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D.2 Additional figures and tables

Table D.2: Share of grain crop production (in tonnes) over total production of
the main staple and cash crops in SSA.

Grain crop Share Cash crop Share
Cassava 56.65% Coffee 1.13%
Maize 11.75% Cotton 1.14%
Millet 4.59% Groundnut 2.72%
Rice 2.18% Palm oil 4.93%
Sorghum 6.15% Soybean 0.33%
Wheat 1.13% Sugarcane 7.31%
Total: 82.45% Total: 17,55%

Source: GAEZ production data for 2000 aggregated in over all countries of my empirical

setup. SSA includes all sub-Saharan African countries but Somalia.

Table D.3: Climate migration results for country capitals

Country Capital AL; (K) Country Capital AL; (K)
Angola Luanda -77.31 Lesotho Maseru 28.01
Burundi Bujumbura 1,839.29 Mali Bamako 68.85
Benin Cotonou 15.74 Mozambique Maputo -229.99
Burkina Faso Ouagadougou 27.09 Mauritania  Nouakchott 90.89
Botswana Gaborone -371.03 Malawi Lilongwe 11.93
Central African Republic Bangui 83.96 Namibia Windhoek 289.60
Ivory Coast Abidjan 50.70 Niger Niamey -2.02
Cameroon Yaounde 38.32 Nigeria Abuja 35.68
Congo (Kinshasa) Kinshasa 573.44 Rwanda Kigali 182.53
Congo (Brazzaville) Pointe-Noire 218.07 Sudan Khartoum 25.29
Djibouti Djibouti 16.28 Senegal Dakar 86.57
Eritrea Asmara 9.32 Sierra Leone Freetown -70.91
Ethiopia Addis Ababa 31.01 Swaziland Mbabane 52.77
Gabon Libreville 633.11 Chad Ndjamena -10.66
Ghana Accra 20.50 Togo Lome 46.51
Guinea Conakry -80.86 Tanzania Dar es Salaam  -12.17
The Gambia Banjul 98.73 Uganda Kampala 37.28
Guinea Bissau Bissau 17.78 South Africa Johannesburg  163.78
Equatorial Guinea Malabo 146.15 Zambia Lusaka -38.52
Kenya Nairobi -59.89 Zimbabwe Harare -4.74
Liberia Monrovia 119.74
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