Climate Change and Migration: the case of Africa

Bruno Conte

Universitat Pompeu Fabra

Motivation

- Implications of climate change (C Δ): at the center of the policy debate
- Drastic (potential) consequences for Sub-Saharan Africa (SSA):
 - High dependence on agriculture
 - Low usage of modern inputs
 - Rapid population growth

Motivation

- Implications of climate change (C Δ): at the center of the policy debate
- Drastic (potential) consequences for Sub-Saharan Africa (SSA):
 - High dependence on agriculture
 - Low usage of modern inputs
 - Rapid population growth
- Great Climate Migration (Lustgarten, 2020):
 - High vulnerability of SSA (in terms of migration responses to $C\Delta$)
 - Rigaud et al. (2018): intranational climate migration \sim millions by 2050

Research Questions and Outline

- 1. How can C Δ lead to migration flows in SSA (within/across countries)?
- 2. How economic mechanisms and potential policies interact with $C\Delta$ effects?

Research Questions and Outline

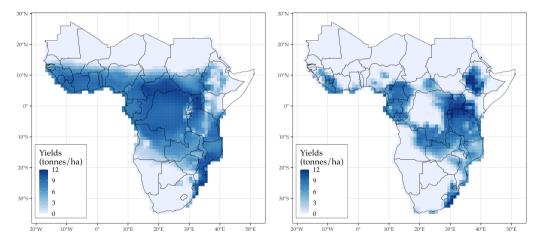
- 1. How can C Δ lead to migration flows in SSA (within/across countries)?
- 2. How economic mechanisms and potential policies interact with $C\Delta$ effects?

This project: Data + Model = long-run GE effects of climate change

- 1. Climate change: agricultural productivity shock
 - FAO-GAEZ data: variation at location-crop level
- 2. Embed it in a multi-sector spatial GE model to quantify:
 - $C\Delta$ migration by the end of the 21st century
 - Role of migration and trade policies on $C\Delta$ effects

Main Results and Takeaways

- 1. Aggregate $C\Delta$ effects:
 - Migration flows (22 million) and real GDP pc losses (-1.8%)
 - Magnitude of results: determined by spatial frictions
- 2. Distributional effects:
 - Heterogeneous migration responses across space [-280K, 270K]
 - Country-level welfare effects: [-14%, 3%]
 - Production adaptation across sectors + trade: mitigate $C\Delta$ effects
- 3. SSA as the European Union (\downarrow trade and migration barriers):
 - EU's migration and trade policies: \downarrow aggregate and distributional losses
 - Main channel: CΔ-induced structural change


Data

Spatial Data: $1^{\circ} \times 1^{\circ}$ grid cells (~ 2000 cells) more

- 1. GDP and Population:
 - 2000: both values from (G-Econ, Nordhaus et al., 2006)
 - 1975: population from (GHSP, Florczyk et al., 2019)
 - 2080: population estimates (UN's Population Prospects, at the country level)
- 2. Transportation network: African extract from gROADS and transportation friction surface from Weiss et al. (2018)
- 3. Agriculture: GAEZ agro-climatic potential yields (IIASA and FAO, 2012):
 - Unit: tons/ha, subsistence (rainfed) technology
 - Crops: cassava, maize, millet, rice, sorghum, wheat
 - Time periods: 1975, 2000 and 2080 (RCP 8.5)

$C\Delta$ and Agricultural Productivity spatial-crop heter. production

Figure 1: CA effects on potential yields of cassava for 2000 (left) and 2080 (right).

Model, Calibration, and Counterfactuals

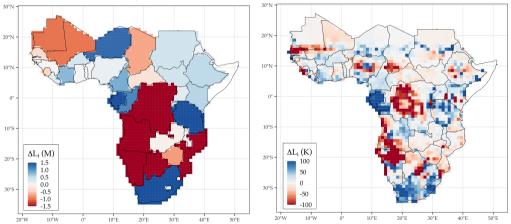
Model and C Δ Counterfactuals Outlook

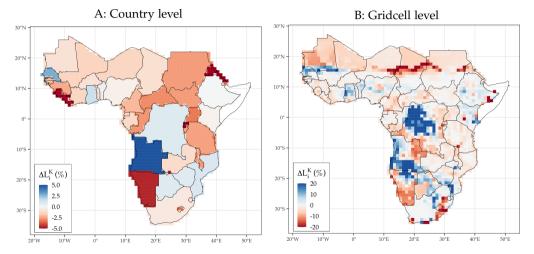
- Static, multi-sector spatial GE model
 - Love for varieties (consumers) +
 - Trade frictions (production and trade) +
 - Congestion forces (location choice) =
 - Main outcomes: sectoral production takes place in the most productive regions
- Calibration: replicates SSA economy
 - Crop productivities by early 21st century
 - Migration frictions \leftrightarrow internal + international migration data
 - Trade frictions \leftrightarrow international trade flows + crop price data
- Climate change: shock to the crop productivities (end of century)
 - Reshuffles economic activity (and population)

Main Counterfactual Details

- Solve for the model's spatial equilibrium with:
 - Population estimates for end of 21 century+
 - 1. Crop suitabilities with C Δ -
 - 2. Crop suitabilities with (no $C\Delta$)

Main Counterfactual Details


- Solve for the model's spatial equilibrium with:
 - Population estimates for end of 21 century+
 - 1. Crop suitabilities with C Δ -
 - 2. Crop suitabilities with (no $C\Delta$)
- Results: C Δ migration (~ 22 million), welfare losses (real GDP pc \downarrow 1.8%), non-agricultural employment (\downarrow 0.82%) ^{C Δ migration} (empl. results) welfare results


		Location Level			Country Level			
	Aggregate	Bottom decile	Median	Top decile	Angola	Senegal	Nigeria	Tanzania
Δ Population (K)	22,315.27	-108.05	-0.63	94.59	-1,686.26	-347.16	133.24	2,760.20
Δ Non–agric.	-0.82	-10.89	-1.40	16.16	4.92	2.78	-0.31	-2.53
Δ Real GDP pc	-1.76	-22.86	-3.76	4.56	-16.60	-32.81	-1.11	2.50

A: Country level

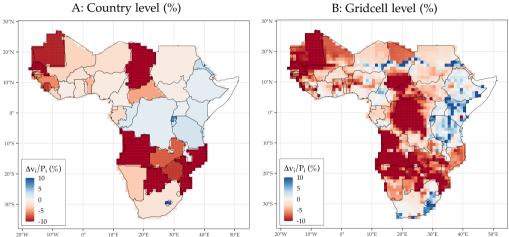

B: Gridcell level

Figure 3: Climate change impact on non-agricultural employment. back

Figure 4: Climate change impact on real GDP per capita. back

B: Gridcell level (%)

Policy Experiments: Migration and Trade Policies

- A. Trade, Migration, and Sectoral Specialization: mitigating role;
 - Trade: attenuates "the food problem" (Gollin et al., 2007; Nath, 2022)
 - Trade and migration: subsitutes as adaptation (Conte et al., 2021)
 - Migration: key adaptation (Cruz and Rossi-Hansberg, 2023)
- B. Policy Experiment: SSA as the European Union (trade/migration policies)

		SSA as frictionless as the EU details					
	Baseline	Migration Policy	Trade Policy	Both			
Δ Pop. (M)	22.32	34	9.18	20.46			
Δ Non–agric. (%)	-0.82	-0.54	-0.84	-0.76			
Δ GDP pc (%)	-1.76	-1.01	-1.31	-1.41			
[bottom, top]	[-14.62; 3.27]	[-11.32; 4.69]	[-6.32; 3.69]	[-5.64; 3.35]			

Additional Experiments and Robustness Checks details

1. Additional Experiments

- One-crop vs. multi-crop: larger welfare losses
- Homothetic preferences: major welfare gains (economy substitute out agricultural goods for non-agric.)
- Endogenous fertility: reduces population growth in damaged locations
 - Less climate migration
- 2. Robustness:
 - C Δ assumptions: RCP 4.5 (less severe)
 - Frictions to mobility: goods and labor

Final Remarks

Final Remarks

- Study and quantify climate migration in SSA by combining:
 - Rich spatial data for SSA
 - Tractable, transparent spatial GE model
- Main results: $C\Delta$ effects on migration, welfare, and structural change
 - Sector adaptation and trade: key adaptation mechanisms
 - Trade and migration policies: powerful mitigation tools (EU as benchmark)
- Beyond the (current) scope:
 - Rest of the world, land, other C Δ effects, innovation, political economy, ...

Thank you!

bruno.conte@upf.edu

References I

- Abel, Guy J and Joel E Cohen, "Bilateral international migration flow estimates for 200 countries," *Scientific data*, 2019, 6 (1), 1–13.
- Asturias, Jose, Manuel García-Santana, and Roberto Ramos, "Competition and the welfare gains from transportation infrastructure: Evidence from the Golden Quadrilateral of India," *Journal of the European Economic Association*, 2019, 17 (6), 1881–1940.
- Atkin, David and Dave Donaldson, "Who's getting globalized? The size and implications of intra-national trade costs," Technical Report, National Bureau of Economic Research 2015.
- ____, Arnaud Costinot, and Masao Fukui, "Globalization and the Ladder of Development: Pushed to the Top or Held at the Bottom?," Technical Report, National Bureau of Economic Research 2021.
- **Baez, Javier, German Caruso, Valerie Mueller, and Chiyu Niu**, "Heat Exposure and Youth Migration in Central America and the Caribbean," *American Economic Review*, 2017, 107 (5), 446–50.
- Borchert, Ingo, Mario Larch, Serge Shikher, and Yoto V Yotov, "The international trade and production database for estimation (ITPD-E)," *International Economics*, 2021, 166, 140–166.

References II

- **Brown, Oli et al.**, "Climate change and forced migration: Observations, projections and implications," Technical Report, Human Development Report Office (HDRO), United Nations Development Programme ... 2007.
- **Bryan, Gharad and Melanie Morten**, "The aggregate productivity effects of internal migration: Evidence from Indonesia," *Journal of Political Economy*, 2019, 127 (5), 2229–2268.
- **Cai, Ruohong, Shuaizhang Feng, Michael Oppenheimer, and Mariola Pytlikova**, "Climate variability and international migration: The importance of the agricultural linkage," *Journal of Environmental Economics and Management*, 2016, 79, 135–151.
- **Caliendo, Lorenzo, Luca David Opromolla, Fernando Parro, and Alessandro Sforza**, "Goods and factor market integration: a quantitative assessment of the EU enlargement," *Journal of Political Economy*, 2021, 129 (12), 3491–3545.
- Comin, Diego, Danial Lashkari, and Martí Mestieri, "Structural change with long-run income and price effects," *Econometrica*, 2021, 89 (1), 311–374.
- **Conte, Bruno, Klaus Desmet, Dávid Krisztián Nagy, and Esteban Rossi-Hansberg**, "Local sectoral specialization in a warming world," *Journal of Economic Geography*, 2021, 21 (4), 493–530.
- **Cruz, José-Luis and Esteban Rossi-Hansberg**, "The Economic Geography of Global Warming," *forthcoming, Review of Economic Studies*, 2023.

References III

- Desmet, Klaus and Esteban Rossi-Hansberg, "Spatial Development," *The American Economic Review*, 2014, 104, 1211–1243.
- **Donaldson, Dave**, "Railroads of the Raj: Estimating the impact of transportation infrastructure," *American Economic Review*, 2018, 108 (4-5), 899–934.
- __ and Richard Hornbeck, "Railroads and American economic growth: A "market access" approach," The Quarterly Journal of Economics, 2016, 131 (2), 799–858.
- Ducruet, César, Réka Juhász, Dávid Krisztián Nagy, and Claudia Steinwender, "All aboard: The effects of port development," Technical Report, National Bureau of Economic Research 2020.
- Eckert, Fabian and Michael Peters, "Spatial structural change," Unpublished Manuscript, 2018.
- **Fajgelbaum, Pablo and Stephen J Redding**, "Trade, Structural Transformation, and Development: Evidence from Argentina 1869–1914," *Journal of Political Economy*, 2022, *130* (5), 1249–1318.
- Fan, Tianyu, Michael Peters, and Fabrizio Zilibotti, "Service-led or service-biased growth? Equilibrium development accounting across Indian Districts," Technical Report, National Bureau of Economic Research 2021.
- Florczyk, AJ, C Corbane, D Ehrlich, S Freire, T Kemper, L Maffenini, M Melchiorri, M Pesaresi, P Politis, M Schiavina et al., "GHSL Data Package 2019," *Luxembourg. EUR*, 2019, 29788.

References IV

- Gemenne, François, Caroline Zickgraf, Elodie Hut, and Tatiana Castillo Betancourt, "Forced displacement related to the impacts of climate change and disasters," *9780198786467*, 2022.
- Gollin, Douglas, Stephen L Parente, and Richard Rogerson, "The food problem and the evolution of international income levels," *Journal of Monetary Economics*, 2007, 54 (4), 1230–1255.
- Gröger, André and Yanos Zylberberg, "Internal labor migration as a shock coping strategy: Evidence from a typhoon," *American Economic Journal: Applied Economics*, 2016, 8 (2), 123–53.
- Henderson, J Vernon, Adam Storeygard, and Uwe Deichmann, "Has climate change driven urbanization in Africa?," *Journal of development economics*, 2017, 124, 60–82.

IIASA and FAO, "Global Agro-Ecological Zones (GAEZ v3. 0)," 2012.

Lagakos, David, Ahmed Mushfiq Mobarak, and Michael E Waugh, "The welfare effects of encouraging rural-urban migration," Technical Report, National Bureau of Economic Research 2018.

Lustgarten, Abrahm, "The Great Climate Migration Has Begun," The New York Times, Jun 2020.

- Moneke, Niclas, "Can Big Push Infrastructure Unlock Development? Evidence from Ethiopia," Technical Report, Mimeo 2020.
- Morten, Melanie and Jaqueline Oliveira, "The effects of roads on trade and migration: Evidence from a planned capital city," *NBER Working Paper*, 2018, 22158, 1–64.

References V

- Myers, Norman, "Environmental refugees," Population and environment, 1997, 19 (2), 167-182.
- _____, "Environmental refugees: a growing phenomenon of the 21st century," *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences*, 2002, 357 (1420), 609–613.
- **Nagy, Dávid Krisztián**, "Hinterlands, city formation and growth: evidence from the US westward expansion," Technical Report 2022.
- Nath, Ishan B, "The Food Problem and the Aggregate Productivity Consequences of Climate Change," Technical Report 2022.
- Nordhaus, William, Qazi Azam, David Corderi, Kyle Hood, Nadejda Makarova Victor, Mukhtar Mohammed, Alexandra Miltner, and Jyldyz Weiss, "The G-Econ database on gridded output: methods and data," *Yale University, New Haven*, 2006, 6.
- Redding, Stephen J, "Goods trade, factor mobility and welfare," *Journal of International Economics*, 2016, 101, 148–167.
- Rigaud, KK, B Jones, J Bergmann, V Clement, K Ober, J Schewe, S Adamo, B McCusker, S Heuser, and A Midgley, "Groundswell: Preparing for Internal Climate Migration (Washington, DC: World Bank)," 2018.
- Sotelo, Sebastian, "Domestic trade frictions and agriculture," *Journal of Political Economy*, 2020, 128 (7), 2690–2738.

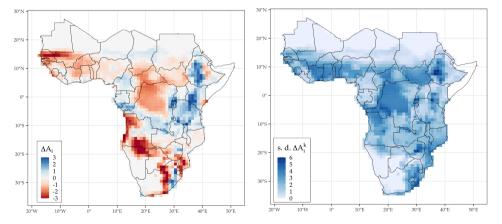
References VI

- Takeda, Kohei, "The Geography of Structural Transformation: Effects on Inequality and Mobility," 2022.
- Weiss, D, A Nelson, HS Gibson, W Temperley, S Peedell, A Lieber, M Hancher, E Poyart, S Belchior, N Fullman et al., "A global map of travel time to cities to assess inequalities in accessibility in 2015," *Nature*, 2018, 553 (7688), 333.

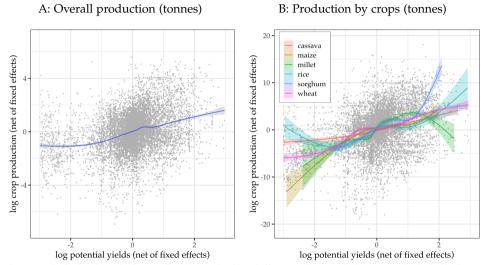
Appendix

Contribution to the Literature: Details **back**

- Weather shocks and migration: empirical literature (Baez et al., 2017; Cai et al., 2016; Gröger and Zylberberg, 2016; Henderson et al., 2017)
- Spatial structural change (Desmet and Rossi-Hansberg, 2014; Eckert and Peters, 2018; Fan et al., 2021; Fajgelbaum and Redding, 2022; Takeda, 2022)
- Migration (barriers) and development (Bryan and Morten, 2019; Caliendo et al., 2021; Morten and Oliveira, 2018; Lagakos et al., 2018)
- Market integration and development (Asturias et al., 2019; Donaldson, 2018; Nagy, 2022; Ducruet et al., 2020; Sotelo, 2020; Atkin and Donaldson, 2015; Donaldson and Hornbeck, 2016; Atkin et al., 2021)

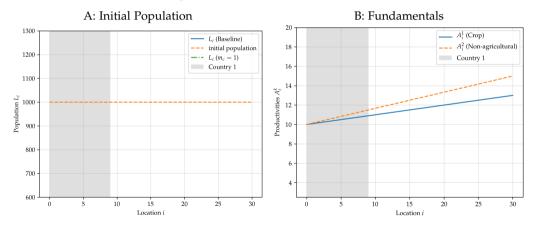

Additional Data Sources **back**

- Sectoral production data (2000 circa):
 - Crop-cell-level production (tons, FAO-GAEZ)
 - Crop-country-level production (US\$, FAOSTAT)
 - Country-level sectoral VA (WBDI)
- Trade data: country-pair-sector tradeflows (1990-2005) from the International Trade and Production Database (ITPD-E, Borchert et al., 2021)
- Migration data: country-pair flows (1990-2005, from Abel and Cohen, 2019)


Heterogeneous Effects of $C\Delta$ (back)

A: Change in average suitability to agriculture (ton/ha)

B: Standard deviation of changes in crop suitabilities at the location level


Potential Yields and Production in SSA **back**

Notes: The two panels plot the relationship between GAEZ potential yields and effective production at the location-crop level. The blue line stands for an estimated polynomial regression of production on yields and location and country-crop fixed effects. Grey-shaded areas stand for 95% confidence bands.

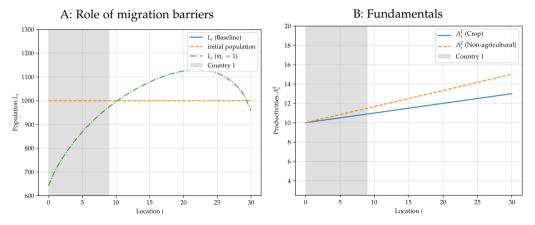

Model – Economy as a Line (back)

Figure 5: Role of bilateral migration frictions, trade frictions, country borders, crop choices, and non–homothetic preferences.

Model – Economy as a Line (back)

Figure 6: Role of bilateral migration frictions, trade frictions, country borders, crop choices, and non–homothetic preferences.

Model – Economy as a Line (back)

Figure 7: Role of bilateral migration frictions, trade frictions, country borders, crop choices, and non–homothetic preferences.

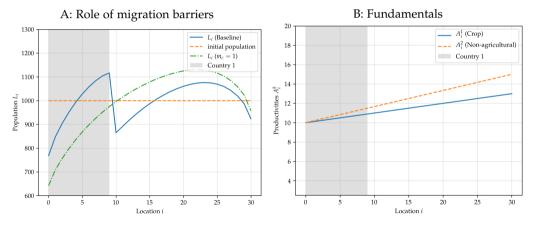


Figure 8: Role of bilateral migration frictions, trade frictions, country borders, crop choices, and non–homothetic preferences.

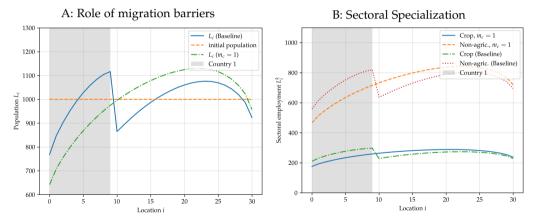


Figure 9: Role of bilateral migration frictions, trade frictions, country borders, crop choices, and non–homothetic preferences.

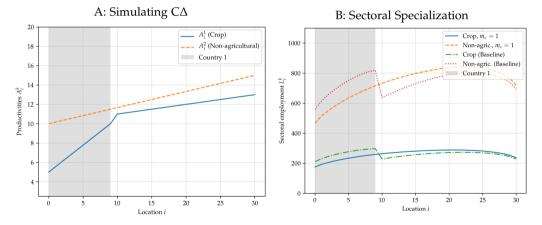


Figure 10: Role of bilateral migration frictions, trade frictions, country borders, crop choices, and non–homothetic preferences.

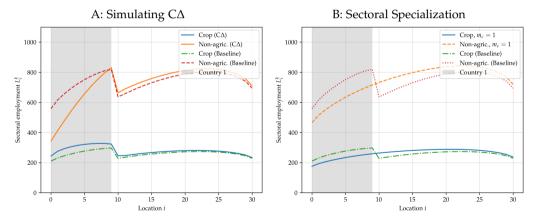


Figure 11: Role of bilateral migration frictions, trade frictions, country borders, crop choices, and non–homothetic preferences.

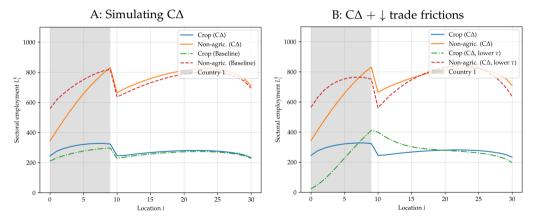


Figure 12: Role of bilateral migration frictions, trade frictions, country borders, crop choices, and non–homothetic preferences.

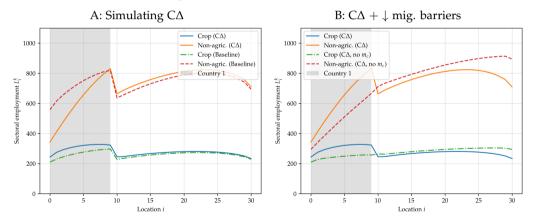
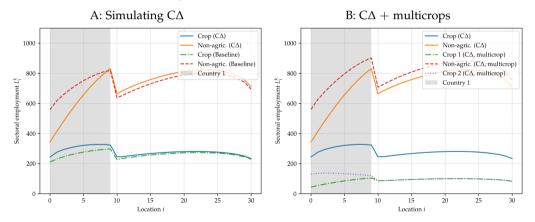
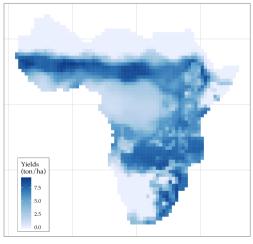
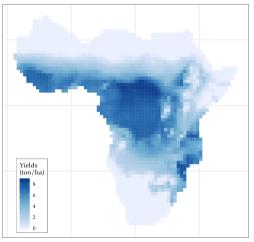




Figure 13: Role of bilateral migration frictions, trade frictions, country borders, crop choices, and non–homothetic preferences.



Drawing $\{A_i^k\}$ from FAO-GAEZ (ack)

A: Sorghum potential yields (2000)

Quantification Algorithm **back**

Method: invert the spatial equilibrium to (numerically) solve for:

- 1. $\{A_i^K, b_i^k, \Omega_a, \Omega_K, \tau^F\}_{i,k}$ (technology-side; inner/outer loop)
 - Inner loop: conditional on τ^F , pins dows A_i^K , b_i^k , Ω_a , Ω_K targetting (respectively) the spatial distribution of GDP, of sectoral output, and aggregate (relative) non-agric. expenditure Note: normalize $A_i^K = 1$ (cannot separate from b_i^k)
 - Outer loop: iterates over $\tau^F \in [1, ..., 3]$ to match aggregate bilateral (and observed) country trade flows
- 2. $\{u_i, m_c, \phi\}_{i,c}$ (location-choice-side; inner/outer loop)
 - Inner loop: conditional on ϕ , pins down u_i , m_c targetting (respectively) the spatial distribution of population and country-level migration inflows
 - Outer loop: iterates over $\phi \in [1, ..., 2]$ to match aggregate internal migration flows ~ 50 million (Myers, 1997, 2002; Brown et al., 2007; Gemenne et al., 2022)

Quantification Algorithm: Production/Consumption Dark

Inner loop: I use the market clearing condition of the model to build the equations for nominal GDP, sectoral wage bills, and aggregate sectoral expenditure shares (and invert them to solve for the elements of interest):

$$w_{j}L_{j} = \sum_{i \in S} \sum_{k \neq K} \lambda_{ji}^{k} \Xi_{i}^{k} \mu_{i}^{a} w_{i}L_{i} + \sum_{i \in S} \lambda_{ji}^{K} \mu_{i}^{K} w_{i}L_{i}$$

$$X_{j}^{k} = \sum_{i \in S} \lambda_{ji}^{k} \Xi_{i}^{k} \mu_{i}^{a} w_{i}L_{i} \quad \forall k \neq K$$

$$X_{j}^{K} = \sum_{i \in S} \lambda_{ji}^{K} \mu_{j}^{K} w_{i}L_{i}$$

$$X_{K}/X_{a} = \frac{\sum_{i \in S} \sum_{i \in S} \lambda_{ji}^{K} \mu_{i}^{K} w_{i}L_{i}}{\sum_{k \neq K} \sum_{j \in S} \sum_{i \in S} \lambda_{ji}^{k} \Xi_{i}^{k} \mu_{i}^{a} w_{i}L_{i}}.$$

$$(1)$$

Quantification Algorithm: Production/Consumption Dark

$$A_{j}^{K} = \begin{bmatrix} \frac{w_{j}L_{j} - \sum_{i \in S} \sum_{k \neq K} \lambda_{ji}^{k} \Xi_{i}^{k} \mu_{i}^{a} w_{i}L_{i}}{\sum_{i \in S} \left(w_{i} \tau_{ji} / b_{j}^{K} P_{i}^{K} \right)^{1 - \eta_{K}} \mu_{i}^{K} w_{i}L_{i}} \end{bmatrix}^{\frac{1}{\eta_{K} - 1}}$$
(5)
$$b_{j}^{K} = \begin{bmatrix} \frac{X_{j}^{k}}{\sum_{i \in S} \left(w_{j} \tau_{ji} / A_{j}^{k} P_{i}^{k} \right)^{1 - \eta_{k}} \Xi_{i}^{k} \mu_{j}^{a} w_{i}L_{i}} \end{bmatrix}^{1 / (\eta_{K} - 1)}$$
$$\forall k \neq K$$
(6)
$$b_{j}^{K} = \begin{bmatrix} \frac{X_{j}^{K}}{\sum_{i \in S} \left(w_{j} \tau_{ji} / A_{j}^{K} P_{i}^{K} \right)^{1 - \eta_{K}} \mu_{j}^{K} w_{i}L_{i}} \end{bmatrix}^{1 / (\eta_{K} - 1)}$$
(7)
$$\Omega_{K} / \Omega_{a} = \frac{X^{K}}{X^{a}} \times \frac{\sum_{i \in S} \sum_{i \in S} \lambda_{ji}^{k} \Xi_{i}^{k} \left(P_{i}^{a} / P_{i} \right)^{1 - \sigma} (w_{i} / P_{i})^{\varepsilon_{a} - (1 - \sigma)} w_{i}L_{i}}$$
(8)

Quantification Algorithm: Location Choice Dack

Inner loop: I optimal location choice equation to calculate L_i and L_c . Then, I invert them to pin down amenities and country barriers as a function of the former:

$$m_{c} = \left[L_{c}^{-1} \times \sum_{j \in c} \sum_{i \notin c} \frac{\left(w_{j}/P_{j} \right)^{\theta} m_{ij}^{-\theta} u_{j}}{\sum_{s \in c(j)} \left(w_{s}/P_{s} \right)^{\theta} m_{is}^{-\theta} u_{s} + \sum_{s \notin c(j)} \left(w_{s}/P_{s} \right)^{\theta} m_{is}^{-\theta} m_{c(s)}^{-\theta} u_{s}} L_{i0} \right]^{1/\theta}$$
(9)
$$u_{j} = L_{j} \times \left[\sum_{i \in c(j)} \frac{\left(w_{j}/P_{j} \right)^{\theta} m_{is}^{-\theta} u_{s} + \sum_{s \notin c(j)} \left(w_{s}/P_{s} \right)^{\theta} m_{is}^{-\theta} m_{c(s)}^{-\theta} u_{s}}{\sum_{s \in c(j)} \left(w_{s}/P_{s} \right)^{\theta} m_{is}^{-\theta} u_{s} + \sum_{s \notin c(j)} \left(w_{s}/P_{s} \right)^{\theta} m_{is}^{-\theta} m_{c(s)}^{-\theta} u_{s}} L_{i0} + \sum_{i \notin c(j)} \frac{\left(w_{j}/P_{j} \right)^{\theta} m_{is}^{-\theta} m_{c(j)}^{-\theta}}{\sum_{s \in c(j)} \left(w_{s}/P_{s} \right)^{\theta} m_{is}^{-\theta} u_{s} + \sum_{s \notin c(j)} \left(w_{s}/P_{s} \right)^{\theta} m_{is}^{-\theta} m_{c(s)}^{-\theta} u_{s}} L_{i0} \right]^{-1}$$
(10)

Quantification Results: Outer Loops Dack

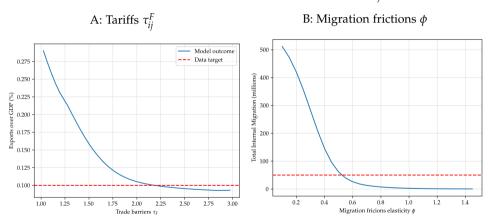
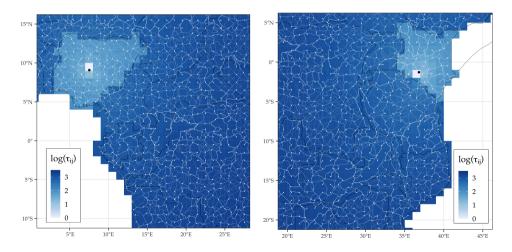
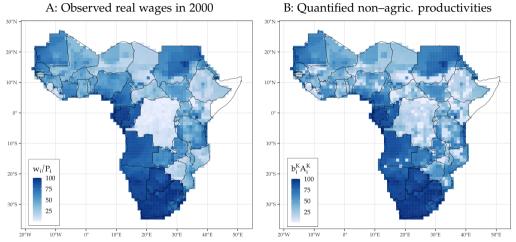
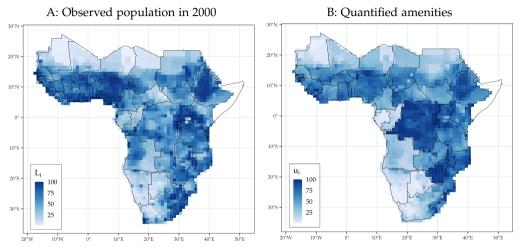



Figure 14: Results of the outer loops that solve for τ_{ii}^F and ϕ

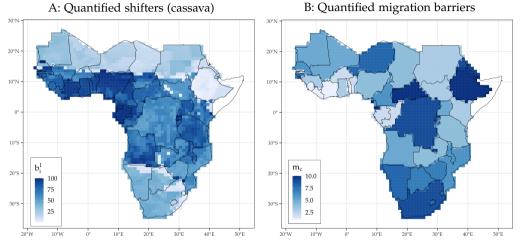

Notes: Panel A: Grid search over τ_{ij}^F (x-axis) and the resulting model-generated international trade flows (y-axis). The dashed red line stands for the target of the observed trade flows in the data. Panel B: analogous grid search over ϕ and the resulting model-generated internal migration flows.

Geographic trade friction: distance $(i, j)^{\delta}$, $\delta = 0.3$ (Moneke, 2020); Trade costs: distance $(i, j)^{0.3} \times \tau_F$, $\tau_F = 2.175$ (quantified)

Figure 15: Quantified trade network for two subsamples of SSA. back



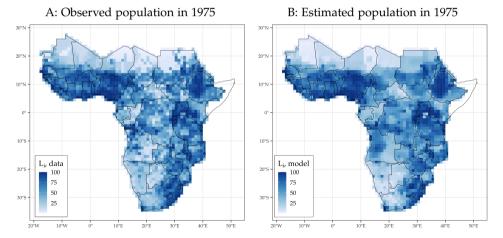
Quantification Results (back)


Notes: All results are shown in percentiles, where 1 (100) stands for the bottom (top) percentile of each sample. A and B document, respectively, the spatial distribution of the real wages in 2000 and the product of the quantified non–agricultural productivities productivity shifter of the non–agricultural sector.

Quantification Results (back)

Notes: All results are shown in deciles, where 1 (100) stands for the bottom (top) decile of each sample. A and B document, respectively, the spatial distribution of observed population in 2000 and the quantified amenities .

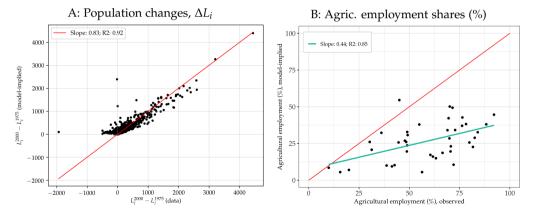
Quantification Results (back)



Notes: All results are shown in deciles, where 1 (100) stands for the bottom (top) decile of each sample. A and B document, respectively, the spatial distribution of the quantified cassava shifters and country migration barriers (the latter in deciles).

Validating the model: backcasting exercise using \mathcal{L} and $\{A_i^k\}_{k \neq K}$ for 1975; check:

- model-implied population differences between 2000 and 1975
- extra: model-implied agricultural employment in 2000


Figure 16: Backcasting exercise: population distribution in 1975. back

Validating the model: backcasting exercise using \mathcal{L} and $\{A_i^k\}_{k \neq K}$ for 1975; check:

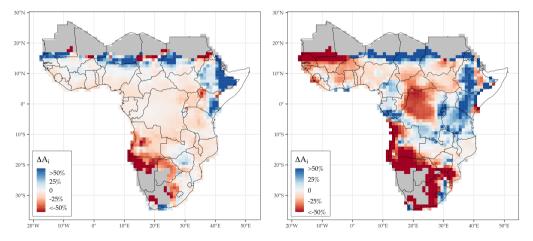

- model-implied population differences between 2000 and 1975
- extra: model-implied agricultural employment in 2000.

Figure 17: Model goodness of fit: backcasting results for differences in population and labor shares in agriculture for 2000. **back**

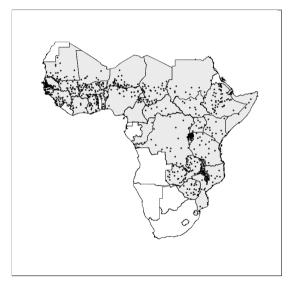


Figure 18: Change in agricultural suitabilities in SSA. (back)

A: Change in average suitability to agriculture B: Change in average suitability to agriculture (1975–2000). (2000–2080).

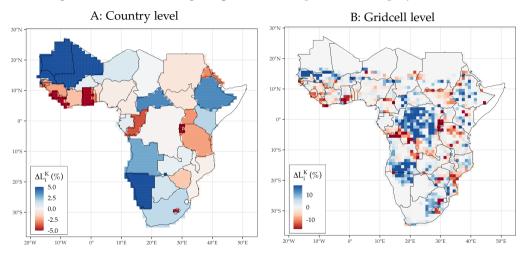
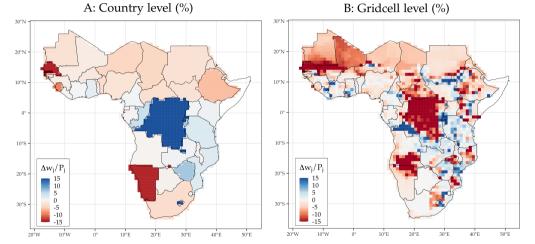
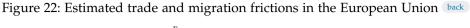
Newly Collected Price Data (back)

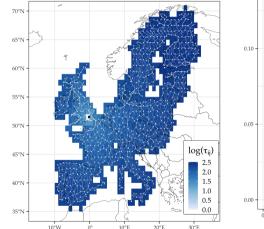
Crop price data from WFP-VAM project (FAO):

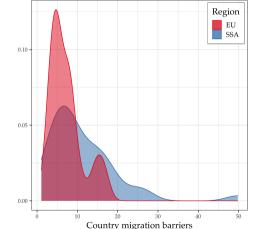
- \sim 40 countries and 900 markets (coordinates)
- 4 crops: maize, millet, sorghum, rice
- Covers 2000–2018

No origin-destination structure: use price dispersion to pin down δ (SMM)

A: Country level B: Gridcell level 30°N 30°N 20°N 20°N 10°N $10^{\circ}N$ 0 0° $10^{\circ}S$ 10°S - $\Delta L_i(K)$ $\Delta L_i(K)$ 20°S · 20°S -500 100 250 50 0 0 30°5 · 30°S --50 -250-500 -100 20°E 30°E 50°E 10°E 20°E 20°W 10°W 10°E 40°E 0° 20°W 10°W 0° 30°E 40°E 50°E


Figure 20: Climate change impact on non-agricultural employment. back


A: Tariff-like trade frictions τ_{ii}^F in the European Union

20°E

10°W

B: Country migration barriers $\{m_c\}_c$ in the European Union and SSA

Notes: Panel A presents trade frictions in the EU as done for SSA in Figure 15 (in this context, trade frictions are relative to Barcelona (Spain), represented by the black dot). Panel B plots the distribution of country migration barriers $\{m_c\}_c$ in SSA and the EU.

Robustness Checks and Additional Experiments **back**

	(1)	(2)	(3)
	Climate migration (million individuals)	∆ GDP per capita (%)	Δ Non–agricultural employment (%)
Benchmark results	4.02	-1.18	-0.85
Panel A: Robustness to frictions			
Higher trade frictions	17.41	-7.05	-3.19
Lower trade frictions	2.01	0.10	0.50
Higher migration frictions	0.37	-1.78	-1.11
Lower migration frictions	24.47	1.06	-0.33
Panel B: Robustness to assumption	ms and C Δ scenario		
Homothetic preferences	3.52	4.38	-1.94
Endogenous fertility	2.52	2.72	1.77
RCP 4.5 scenario	1.34	1.86	1.28

Notes: Panel A presents the aggregate effect of climate change for different levels of trade and migration frictions, driven by the parameters δ and ϕ , respectively. Panel B presents the results of the benchmark simulation when (separately) assuming homothetic preferences between agriculture and non-agriculture, endogenous fertility, and a less severe climate change scenario.

Theory Appendix

Model: Technology and Market Structure **back**

- Representative firm, linear technology, labor as unique input;
- TFP: product of sector-specific efficiency (*b*) and natural advantage (*A*) shifter:

$$q_i^k = b_i^k \times A_i^k \times L_i^k \quad \forall i, j, k$$

- Free mobility of workers across sectors $\rightarrow w_i^k = w_i \; \forall i, k;$
- Production is consumed locally and/or shipped (traded), perfect competition and full information in trade;
- If $q_{ii}^k > 0$, prices equals marginal (production + shipping) costs:

$$p_{ij}^k = (w_i / b_i^k A_i^k) \times \tau_{ij},$$

Model: Preferences (back)

- Continuum of workers $\forall i$; worker v born in i choosing to live in j enjoys:

$$U_{ij}(v) = C_j \times \bar{m}_{ij}^{-1} \times \varepsilon_j(v);$$

- *C_j*: utility from consumption of goods in *j*;
- $\bar{m}_{ij} \equiv$ migration cost between *i* and *j*:
 - $\bar{m}_{ij} = m_{ij} = \operatorname{dist}(i,j)^{\phi}$ if $j \in c(i)$,
 - $\bar{m}_{ij} = m_{ij} \times m_{c(j)}$ otherwise, and
 - c(i): country where location *i* belongs to.
- $\varepsilon_j(v)$: *v*'s taste for living in *j*, drawn i.i.d. from G_j .

- Consumption: choose sector *k* varieties from $\forall i \in S$

$$C_j^k = \left(\sum_{j\in\mathcal{S}} \left(q_{ij}^k
ight)^{rac{\eta_k-1}{\eta_k}}
ight)^{rac{\eta_k-1}{\eta_k-1}};$$

- q_{ji}^k : per capita consumption of j's varieties of good from sector k in i;
- Crops: K 1 sectors aggregated up into a CES "a" composite

$$C_{j}^{a} = \left(\sum_{k \neq K} \left(C_{j}^{k}\right)^{rac{\gamma-1}{\gamma}}
ight)^{rac{\gamma}{\gamma-1}}$$

- Budget constraint:
$$\sum_{j \in S} \sum_{k \in \mathcal{K}} p_{ji}^k q_{ji}^k = w_i$$
, max. w.r.t. $q_{ji}^k \rightarrow$

$$\begin{split} \lambda_{ji}^{k} &= \frac{p_{ji}^{k} q_{ji}^{k}}{\sum_{j \in S} p_{ji}^{k} q_{ji}^{k}} = \left(p_{ji}^{k} / P_{i}^{k}\right)^{1 - \eta_{k}},\\ P_{i}^{k} &= \left(\sum_{j \in \mathcal{S}} \left(p_{ji}^{k}\right)^{1 - \eta_{k}}\right)^{\frac{1}{1 - \eta_{k}}} \end{split}$$

- Analogous results for $C_i^{k'}$ s shares *within agriculture*:

$$\Xi_j^k = \left(P_j^k / P_j^a\right)^{1-\gamma},$$
$$P_j^a = \left(\sum_{k \neq K} \left(P_j^k\right)^{1-\gamma}\right)^{\frac{1}{1-\gamma}}.$$

- Non–/agriculture choice (*K*, *a*): non–homothetic CES as in Comin et al. (2021);
- C_j implicitly determined in

$$\sum_{k \in \{a,K\}} \left(\Omega^k \right)^{1/\sigma} \left(C_j \right)^{\epsilon_k/\sigma} \left(C_j^k \right)^{(\sigma-1)/\sigma} = 1$$

- $C_j \equiv w_j / P_j$ and $\mu_j^k \equiv P_j^k C_j^k / w_j$ such that:

$$\mu_{j}^{k} = \Omega^{k} \times \left(P_{j}^{k}/P_{j}\right)^{1-\sigma} \times \left(w_{j}/P_{j}\right)^{\epsilon_{k}-(1-\sigma)} \quad \forall k \in \{a, K\},$$
$$P_{j} = \left(\sum_{k \in \{a, K\}} \left(\Omega^{k} \left(P_{j}^{k}\right)^{1-\sigma}\right)^{\frac{1-\sigma}{\epsilon_{k}}} \times \left(\mu_{j}^{k} w_{j}^{1-\sigma}\right)^{\frac{\epsilon_{k}-(1-\sigma)}{\epsilon_{k}}}\right)^{\frac{1}{1-\sigma}}$$

- Bilateral demand in *j* from sector *k* goods from *i* is X_{ii}^k :

$$X_{ij}^{k} = \lambda_{ij}^{k} \Xi_{j}^{k} \mu_{i}^{k} w_{j} L_{j} \quad \forall k \neq K, \text{ and}$$

$$X_{ij}^{K} = \lambda_{ij}^{K} \mu_{j}^{K} w_{j} L_{j}.$$

- Bilateral trade flows from *i* to *j*:

$$X_{ij} = \sum_{k \in \mathcal{K}} X_{ij}^k = \sum_{k \neq K} \lambda_{ij}^k \Xi_j^k \mu_i^k w_j L_j + \lambda_{ij}^K \mu_j^K w_j L_j.$$

Model: Location Choice **back**

- Choice of worker *v* born in *i*:

$$\max_{j} \quad U_{ij}(v) = (w_j/P_j) \times \bar{m}_{ij}^{-1} \times \varepsilon_j(v)$$

- Assumption: $\varepsilon_j \sim G_j(z) = e^{-z^{- heta} imes u_j L_j^{-lpha}}$
 - *u_j*: amenity level of location *j*;
 - θ : dispersion parameter, decreasing with workers' heterogeneity;
 - *α*: degree of "disutility" w.r.t. population density.
- Implication (Redding, 2016, among others):

$$\Pi_{ij} = \frac{(w_j/P_j)^{\theta} \bar{m}_{ij}^{-\theta} u_j L_j^{-\alpha}}{\sum\limits_{s \in S} (w_s/P_s)^{\theta} \bar{m}_{is}^{-\theta} u_s L_s^{-\alpha}}$$

Model: Spatial Equilibrium (back)

Given a geography $\mathcal{G}(S) = \{\mathcal{L}, \mathcal{A}, \mathcal{U}, \mathcal{T}, \mathcal{M}\}$ and parameters $\{\theta, \alpha, \sigma, \gamma_a, \{\eta_k\}_k, \{b_i^k\}_{i,k}\}$, a spatial equilibrium is a vector of wages and labor allocations $\{w_j, L_j\}_{j \in S}$ such that

- 1. Prices solve firms' and workers consumption choice problems;
- 2. Labor allocations solve workers' location choice problem (labor market clearing);
- 3. Markets for goods clear; i.e. total GDP equals total sales and total expenditure:

$$w_j L_j = \sum_{i \in \mathcal{S}} X_{ij} = \sum_{i \in \mathcal{S}} X_{ji} \quad \forall j.$$

 \rightarrow following system of 6 × *N* equations and unkowns:

Model: Spatial Equilibrium (back)

$$w_{j}L_{j} = \sum_{i \in S} \sum_{k \neq K} \left(\frac{w_{i}\tau_{ij}}{b_{i}^{k}A_{i}^{k}P_{j}^{k}} \right)^{1-\eta_{k}} \left(\frac{P_{j}^{k}}{P_{j}^{a}} \right)^{1-\gamma_{a}} \Omega^{a} \left(\frac{P_{j}^{a}}{P_{j}} \right)^{1-\sigma} \left(\frac{w_{j}}{P_{j}} \right)^{\varepsilon_{a}-(1-\sigma)} w_{j}L_{j} + \sum_{i \in S} \left(\frac{w_{i}\tau_{ij}}{b_{i}^{k}A_{i}^{k}P_{j}^{K}} \right)^{1-\eta_{K}} \Omega^{K} \left(\frac{P_{j}^{K}}{P_{j}} \right)^{1-\sigma} \left(\frac{w_{j}}{P_{j}} \right)^{\varepsilon_{K}-(1-\sigma)} w_{j}L_{j}$$
(11)

$$P_j^k = \left(\sum_{i \in S} (w_i \tau_{ij} / b_i^k A_i^k)^{1-\sigma}\right)^{\frac{1}{1-\sigma}}$$
(12)

$$P_j^a = \left(\sum_{k \neq K} \left(P_j^k\right)^{1-\gamma_a}\right)^{\frac{1}{1-\gamma_a}} \tag{13}$$

$$P_{j} = \left(\sum_{k \in \{a,K\}} \left(\Omega^{k} \left(P_{j}^{k}\right)^{1-\sigma}\right)^{\frac{1-\sigma}{\epsilon_{k}}} \left(\mu_{j}^{k} w_{j}^{1-\sigma}\right)^{\frac{\epsilon_{k}-(1-\sigma)}{\epsilon_{k}}}\right)^{\frac{1}{1-\sigma}}$$
(14)

$$\mu_j^k = \Omega^k \left(P_j^k / P_j \right)^{1-\sigma} \left(w_j / P_j \right)^{\epsilon_k - (1-\sigma)}$$
(15)

$$L_{j} = \sum_{i \in S} \frac{(w_{j}/P_{j})^{\theta} \bar{m}_{ij}^{-\theta} u_{j} L_{j}^{-\alpha}}{\sum (w_{s}/P_{s})^{\theta} \bar{m}_{is}^{-\theta} u_{s} L_{s}^{-\alpha}} \times L_{i}^{0}$$
(16)