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1 Introduction

Large shares of the population in low and middle-income countries are employed in small, low-

productivity farms (Restuccia et al., 2008; Adamopoulos and Restuccia, 2014; Gollin et al.,

2014). The prevalence of small farms can constrain technological progress and limit potential

economies of scale and productivity gains, hindering poverty reduction and development

(Foster and Rosenzweig, 2022). Understanding the determinants of the farm size distribution

is therefore a first-order concern.

This paper studies a potential determinant of land fragmentation that is particularly

salient in low and middle-income countries, uninsured risk. In these settings, agricultural

production is highly exposed to income fluctuations related to weather and commodity price

variability and coping mechanisms like insurance and credit are scant (Jayachandran, 2006;

Colmer, 2021; Fafchamps, 1992; Cole et al., 2017; Carter et al., 2017).1 In the event of a

negative productivity shock, poor land owners may have to sell a fraction of their landholdings

in order to smooth consumption, affecting in turn the farm-size distribution (Rosenzweig

and Wolpin, 1993; Carter and Zimmerman, 2003; Kazianga and Udry, 2006).2 Using two

unique administrative data sets with information on hundreds of thousands of land sale

transactions and information on a land registry covering most of the country of Colombia,

we show that temperature shocks cause land sales and lead on average to smaller-sized

farms. We show that this reduction in farm size is entirely driven by the entry of new

landholders that operate relatively small farms, and find no evidence of shocks leading to the

consolidation of larger holdings. To explain these patterns we develop a general equilibrium,

heterogeneous-agent model where agents face an intertemporal consumption decision bound

to a subsistence constraint. The model illustrates how the occurrence of negative productivity

shocks can lead to the exit of incumbent farmers from the agricultural sector, while also

causing new, previously landless agents to buy land. Both our empirical and theoretical

results document how climate-induced distress land sales are a relevant margin of adjustment

that can have important distributional and productivity implications. The results shed light

on an additional, potentially large, negative consequence of climate change, given that the

intensity and frequency of extreme weather events are bound to increase in the coming

decades (IPCC, 2021).

1Unsubsidized agricultural insurance coverage rates in high income countries are on average 41.7% while
coverage rates for lower-middle income and low income countries are, respectively, 8% and 0.5% (Mahul and
Stutley, 2008).

2According to a longitudinal survey of rural Colombian households, between 2013 and 2016, nearly 65%
of households who reported selling land did so in order to pay for household expenses or cover outstanding
debts, pay for a medical treatment, or pay for education fees. These figures come from the ELCA survey
described in more detail below.
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To study the relationship between extreme weather events, land transactions and farm

size, we use a unique administrative dataset containing official records of land transactions

between 2000 and 2011 involving plots allocated by the Colombian government to private

farmers throughout the 20th century. These plots comprise about 50% of all rural land

currently held by private individuals in the country and are evenly distributed across regions.

With information on nearly 500,000 land transactions we construct a yearly balanced panel

with the number of full and partial land sales both at the municipality level and at the

vereda level, Colombia’s smallest rural administrative unit. We complement this data with

information collected from the National Land Registry, a census of properties covering most

of Colombia’s farmland. This dataset allows us to measure yearly changes in the number of

land owners and the distribution of plot sizes at the municipality level. Because land rental

markets in Colombia are thin –data from a national representative survey of farms shows

that in 2019 only 9% of farms operated rented land–,3 these measures of plot size are a good

representation of farm size and farm operational scale.

We combine both datasets with high-resolution meteorological data from Copernicus

Climate Change Service (C3S). Our preferred measure of temperature shocks identifies days

of atypically high or low temperatures by constructing distributions that are specific to the

vereda (or the municipality) and to the calendar quarter. This accounts for seasonality and

for differences across regions in weather patterns. We exploit both within-vereda and within-

municipality variation in weather shocks to identify the causal effects of interest under the

standard assumption in the literature (e.g., Dell et al. (2014)) that, conditional on time and

geographical unit fixed effects, temperature shocks are uncorrelated with other time-varying

factors affecting land sales.

First, we show that extreme temperature shocks induce distress land sales. In particular,

100 additional days of atypical temperature in a two-year period increase the number of land

sales in the municipality by 7.6%. These temperature shocks also induce land fragmentation

as average farm size decreases by 1.2%. The latter is driven by the entry of new owners with

land holdings in the lowest quintiles of the initial size distribution. The effect of weather

shocks on land sales is stronger in less densely populated municipalities, located farther away

from urban markets. While land owners in wealthier, better connected municipalities are

more likely to respond to negative temperature shocks by taking out mortgages on their

land. This suggest that better access to credit can mitigate the need for distress sales. We

complement our main findings using data from a 3-wave longitudinal household survey and

show that following an adverse temperature shock, rural households have lower consumption,

3National Agricultural Survey (ENA), carried out by the National Statistical Agency (DANE); 2019-1
bulletin.
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are more likely to migrate, are less likely to hold land, and are more likely to reallocate their

labor to the non-agricultural sector. These effects are consistent with the use of distress sales

as a consumption smoothing mechanism.

This paper contributes to the literature that explores the determinants of farm size in

developing countries. Recent literature on this topic has focused on institutional factors

that distort farm sizes and induce misallocation (Adamopoulos and Restuccia, 2020; Chen

et al., 2022), or on the changes to the distribution of farm sizes induced by variations in

urban labor demand (Rao et al., 2022; Madhok et al., 2022). We add to this literature

by providing evidence on the effect of negative productivity shocks on farm size. While a

standard heterogeneous-agent model with credit market imperfections would predict that

the expansion in land supply due to distress sales should lead to the consolidation of small

farms into larger landholdings, we show that the opposite effect, land fragmentation, takes

place.

Our results also emphasize that low agricultural productivity can be exacerbated by

the aggregate consequences of individual responses to uninsured risk. By documenting

how the aggregate exposure to adverse weather shocks leads to a more fragmented farm

size distribution, our findings point to another mechanism explaining the notoriously low

productivity of agriculture relative to the non-agricultural sector in developing economies

(Gollin et al., 2014; Restuccia et al., 2008; Caselli, 2005). While some previous studies have

documented the occurrence of distress land sales with survey data in several developing

countries (Cain, 1981; Deininger and Jin, 2008; Musyoka et al., 2021), our use of

administrative data allows us to estimate the aggregate effects of distress sales on the farm

size distribution.

Finally, this paper contributes to the literature exploring the effects of weather shocks

on agriculture. This literature has shown that farmers’ responses to weather shocks include

adjustments in labor and intermediate inputs use, changes in crop choice, migration, or

investment in human capital (Jayachandran, 2006; Jessoe et al., 2018; Colmer, 2021; Jagnani

et al., 2021; Aragón et al., 2021). We complement this literature by documenting that land

sales constitute an important margin of adjustment for farmers facing negative productivity

shocks. Because land is the main financial asset of most farmers in developing economies,

land sales can have strong, long-lasting effects on farmers’ future income. As climate change

intensifies, our results highlight an additional mechanism through which increases in the

severity and frequency of adverse weather shocks can deepen the wedge in the performance

of agricultural sectors between poor and rich economies (Burke et al., 2015; IPCC, 2021).

The rest of this paper is organized as follows. In the next section, we describe the

historical and institutional context and our main sources of data. Section 3 gives the details
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of our empirical strategy and in Section 4 we present our main results. Section 5 sketches

the theoretical model that we develop to rationalize our results, and Section 6 concludes.

2 Context, Data, and Descriptive Statistics

Studying the relation between land market transactions, land fragmentation, and weather

shocks requires information with special characteristics. First, we need information at the

transaction level spanning a long time period and a large geographical area. Second, assessing

land fragmentation requires a registry of plot information that allows for characterizing the

complete distribution of the size of farms for a given geographical unit. Third, we need

measures of weather shocks that are homogeneous across time and space and that can be

linked to the transaction and land registry data at some fine geographical level. In this paper,

we use two unique administrative data sets that allow us to study the relations of interest at

an extremely granular level. The first one contains information on plots that were originally

granted to owners in the context of the Colombian public land distribution program. The

second contains information from land property registries. In this section, we provide an

account of the institutional and historical context associated with land redistribution in

Colombia and describe the different data sets that we use.

2.1 The Public Land Allocation Program and the Transaction Data

The Colombian government has carried out free allocations of public idle lands (bald́ıos)

to private individuals uninterruptedly since the beginning of the twentieth century. This

allocations have become the largest and most consequential land reform policy instrument

employed by the national government (Albertus, 2015). Formally, a bald́ıo allocation is an

administrative resolution issued by the national government to transfer state-owned vacant

land to a private party. This allocation process has mostly consisted of a combination of

frontier-settlement schemes where unused public lands are granted to poor smallholders, and

of programs focused on the titling of state-owned lands that might have been previously

informally occupied (Ibáñez and Muñoz, 2010).

The bulk of government-owned land allocations began in the midst of the US Alliance

for Progress program with the enactment of the Social Agrarian Reform Act (Law 135) in

1961, which established the land reform agency (INCORA, later renamed as INCODER, and

currently the National Land Agency, ANT). During the second half of the twentieth century,

land allocation laws were amended on three occasions (Law 01 of 1968, Law 30 of 1988, and

Law 160 of 1994) but the explicit objective of the policy always remained that of reducing

4



land inequality and giving land to landless farmers (CNMH, 2016). Figure 1 shows the

evolution of bald́ıos allocations since 1901, the vast majority of which were granted between

1960 and 1990. In terms of the number of beneficiaries and the amount of land allocated,

the scale of the policy has been vast. More than 550,000 land plots have been granted to

private individuals in 1,034 of the 1,122 existing municipalities. These plots account for 23

million hectares –more than half of the currently privately-held land in the country (Sánchez

and Villaveces, 2016; Arteaga et al., 2017).

Figure 1: One Century of Land Allocations - 1901–2012

Notes: Data from the System of Information for Rural Development (SIDER)

Land petitioners undergo an administrative process with the national land agency

to determine if they fulfill the legal requirements to become a beneficiary. While the

requirements have changed in time, the most important conditions petitioners must fulfill

involve owning no other land and having an income below a given threshold. Under the

current legislation, the process formally consists of nine steps, which include the placement

of an ad announcing the allocation in a local newspaper, and a physical inspection of the plot

to be granted. Although on paper this procedure should take 60 days, allocation processes

are generally much lengthier and some can take years (Gutiérrez Sańın, 2019). Appendix

Figure A1 shows the evolution of the average and median size of allocated plots since 1960.

The overwhelming majority of land allocations made throughout 1961–2014 period consisted

of relatively small land plots, with a median allocation size across municipalities of 6.6
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hectares. Importantly for this paper, Law 160 of 1994 established a ceiling on the amount

of government-allocated land to which a single individual can claim ownership. This limit,

defined by the municipality-specific Agricultural Family Unit (UAF), restricts the capacity of

relatively larger farmers to purchase land that was initially government-owned. In appendix

section B, we show that these land ceilings are not driving our results.

The universe of land allocations made by the government throughout 1901–2011 period

is registered in the System of Information for Rural Development (SIDER) dataset currently

maintained by the ANT. After receiving the plot, beneficiaries must register the property

in the office of the local public notary, and all formal land transactions carried out over

the plot (including mortgages) are henceforth registered and stored in a dataset maintained

by the National Superintendence of Notaries (SNR), the government agency that supervises

regional notaries and keeps a record of all real estate market transactions held among private

parties.4

Figure 2: Yearly land transactions - 2000–2011

Notes: Data from the National Superintendence of Notaries (SNR). The figure shows the national-level
yearly number of transactions held over plots originally granted by the national government.

Our main source of data is the transaction history of all bald́ıo allocations whose

beneficiaries registered their property with the notary thus finalizing the process to obtain a

formal property right.5 We mainly focus on land purchase transactions, which can be either

4The history of the transactions carried out over a plot, named the Certificate of Liberty and Tradition
(Certificado de Libertad y Tradición) is public information that can be consulted by paying a small fee for
any property with a real estate registration number on the web page of the SNR.

5While the registration process was not automatic and a non-negligible number of beneficiaries failed
to follow this last administrative step (Faguet et al., 2020), Appendix Figure A2 in the appendix shows
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the transfer of an entire property from one individual to another, or the subdivision and sale

of only a fraction of the original plot. We refer to these types of transactions as full sales or

partial sales respectively. We also study mortgages, as they could constitute an important

adjustment margin when coping with negative productivity shocks. For each transaction

held between two parties, we have access to information on the plot’s location, the date in

which it occurred, and the type of transaction. Figure 2 shows the yearly evolution of full

and partial sales, along with the number of mortgages originated. Most of the sales in the

land market are full sales, with partial sales representing a relatively small fraction of total

transfers.

We match the location of the plot in the SNR dataset to the official list of Colombian

municipalities and veredas provided by DANE, Colombia’s National Statistical Agency.6 We

construct a balanced yearly panel both at the municipality and at the vereda level with

information on the number of full and partial land sales, mortgages, and government land

allocations. While we can match each of the land plots in the SNR data to their corresponding

municipality, not all properties have information on the vereda, and we are able to identify

it for only 63% of the properties in the SNR data. Figure 3 shows the ratio of total land

sales to total allocations for the sample of plots matched to a vereda between 1980 and 2010.

The map shows that there is substantial variation in the amount of land sales across space

and in the veredas for which we observe transactions.

When deciding on the adequate level of data aggregation we face a tradeoff between

the coarser municipality level and the finer, but potentially selected, vereda sample. We

estimate the effects of weather shocks on land transactions using both samples and present

the results in Section 4. Reassuringly, the choice of sample does not affect the sign or

statistical significance of the results.

2.2 The Land Registry

For over 50 years, the National Geographical Institute of Colombia (IGAC) has collected

information on land use and ownership and keep land valuations up to date. Law 14

of 1983, instituted a plot-level information collection system (the ‘Ficha Predial’ system)

which has been implemented and maintained by IGAC since then. This system is meant to

that allocations and real estate registrations follow each other closely across time, suggesting that the great
majority of land plots allocated did end up being registered.

6Municipalities are the smallest official administrative division in Colombia. For some administrative
purposes, rural areas within municipalities are further divided into veredas. Veredas operate under the
executive power of municipalities’ mayors but have their own democratically elected Community Action
Boards (Juntas de Acción Comunal). There are approximately 30,000 veredas in Colombia and 1,123
municipalities.
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Figure 3: Ratio of Land Sales to Number of Allocations

Notes: Data from the National Superintendence of Notaries (SNR). The figure shows the proportion of plots
sold in each vereda to the total number of plots allocated by the government between 1980 and 2011.

collect information on the location, size, and economic purpose of all real properties in every

Colombian municipality with the exception of the state of Antioquia, which runs its own,

independent, cadastral information system (Ibánez et al., 2012).

This information system is meant to be an up-to-date census of land ownership for the

whole country, and the law stipulates that IGAC must carry out cadastral updates in every

municipality every five years. Information is not, however, updated on a regular basis and

the amount of time between cadastral updates varies significantly across municipalities.7

Martinez (2019) shows that IGAC updates are not driven by changes in economic conditions

of the municipalities (e.g. property booms).

In our study, we use municipal-level aggregate information from all plots in IGAC’s

cadastre that are i) privately owned, and ii) categorized as having an agricultural economic

purpose. This amounts to roughly 40 million hectares of land. We use a yearly panel of

municipalities with the number of plots, the number of owners and average plot size within

size ranges as calculated by (Ibánez et al., 2012). The data from the land registry is only

7There are currently 80 municipalities across the country in which IGAC has not yet established the
census-level cadastral information system. These municipalities have, instead, a self-reported information
system (‘Catastros Fiscales’) in which landowners voluntarily register their properties in regional IGAC
offices.
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available for the period 2000-2011 and so we restrict our analysis to this time period. We

exclude from our final sample of municipalities (both for the transaction-level data and for

the land registry data) large metropolitan areas and municipalities with very few (i.e. below

the 99th percentile) properties registered. Our final sample is made up of 927 municipalities,

which encompass 85.3% of the rural population in the country.

2.3 Weather Data and Temperature Shocks

We define temperature shocks that are specific to each geographical unit (either municipality

or vereda) in order to account for the very large variation in climatic conditions across

Colombian rural areas. The shocks are defined based on the unit’s specific distribution of

weather realizations, which we compute using long-run daily weather measurements (similar,

for example, to Kaur (2019)). While this approach contrasts with weather shock definitions

based on a fixed temperature threshold, which might be more suitable for the analysis of a

specific region or crop (see, for example, Ibáñez et al. (2022)), we show that our results are

robust to measures such measures of shocks that use using fixed thresholds.

We construct measures of temperature shocks using the ERA5 data set, provided

by the Copernicus Climate Change Service (C3S) of the European Centre for Medium-

Range Weather Forecasts (ECMWF). This dataset contains global reanalysis information

on temperature with a horizontal resolution of 0.25 × 0.25 degrees (approximately 28 km2

depending on the longitude) at an hourly frequency.8 We use the temperature of the

atmosphere two meters above the surface (in degrees Kelvin) from 1979 to 2016 in ERA5 for

pixels in mainland Colombia. For each pixel in the data, we compute the average temperature

for each day d, and obtain the average daily temperature of each vereda-day (or municipality-

day) pair (v, d) by taking a weighted average of the pixels in the vereda using as weights the

area of the pixel relative to the total area of the vereda. We compute the historical quarterly

distribution of daily temperatures by considering all temperature measurements for pairs v, d

in calendar-quarter q throughout the period 1979–2016. For each vereda this results in four

distributions, one per quarter. We compute the 20th and 80th percentiles of each distribution

and define the average temperature of a given vereda-day as atypically high if it is above

the 80th percentile of the corresponding distribution of average daily temperatures of v, q.

Analogously, we define a day as having atypically low temperatures if it is below the 20th

percentile of the corresponding distribution.

Finally, for each year y, we sum the number of atypically high or low temperature days

in each quarter. In our baseline specifications, we estimate the effect on outcomes measured

8Reanalysis weather information from the ERA5 results from the combination of climate models and
observational data from satellites and ground sensors.
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at the vereda-year (v, y) frequency and use as our preferred measure of weather shock the

total number of days with atypical temperatures over the past two years (i.e. y − 1, y − 2).

Figures A3 and A4 in the appendix show the spatial and temporal variation of the resulting

temperature shock measures across veredas. This definition of temperature shocks has two

advantages. First, it takes into account seasonality at the calendar quarter level since the

distribution is specific to q. For example, since some calendar quarter of the year are typically

hotter, we only consider a day as atypically hot if the temperature is high relative to the

historical temperature of that quarter. Second, the measure is specific to the vereda (or

municipality) and takes into account that an absolute temperature might be atypically high

and have a negative consequence in one place but not in another.

In the empirical exercises below we also control for total rainfall. To construct this

measure we use the ERA5 monthly precipitation reanalysis data with resolution 0.1 × 0.1

degrees (approximately 9 km2 depending on the longitude) and use the conversion factor

provided C3S to obtain a measure of total monthly precipitations in cubic milliliters for each

pixel. We then obtain a weighted average across the pixels in the vereda to obtain monthly

average rainfall. Again, we use as weights the size of the pixel relative to the size of the

vereda. For a given year, we add across months to obtain a measure of total precipitation

in the pair vereda-year v, y. We take an analogous average of the pixels that compose a

municipality to obtain measures of total yearly rainfall in a municipality.

Linking the weather data with the SNR land sales vereda-level panel yields a data set

with 12,472 veredas across 782 municipalities. Panel A of Table 1 shows descriptive statistics

of this sample. In a given vereda year, there are, on average, 18 accumulated adjudications,

0.55 sales –0.47 full sales and 0.07 partial sales–, and 0.11 mortgages. These numbers are low

but there is considerable variation across veredas. On average there are 281 days of atypical

temperature days in the two previous years. Linking weather data to the panel of yearly

sales at the municipality level (Panel B of Table 1) yields a sample of 866 municipalities. On

average there are 12.3 land sales on each municipality-year (10.6 full sales; 1.8 partial), and

2.6 mortgage originations. The average municipality-year observation had 277.2 days with

atypical temperatures during the two past years, with a standard deviation of 56.3 days.

Finally, linking the temperature shock measures with the land registry panel yields a

sample of 927 municipalities. In the average municipality-year, there are 2516 owners, 2519

farms, the size of the average farm is 29.4 hectares, and there were 277 days of atypical

temperature in the past two years. Data in all samples is restricted to the 2000–2011 period.
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Table 1: Descriptive Statistics

Panel A: SNR - Vereda (N = 12,472)

Mean Std. Dev. Min Max

Total number of sales 0.55 2.07 0 133
Number of full sales 0.47 1.80 0 132
Number of partial sales 0.07 0.64 0 61
Number of Mortgages 0.11 0.56 0 29
Days of atypical temperature 281.38 55.18 96 560
Days of atypical high temperature 158.42 93.46 0 508
Days of atypical low temperature 122.96 87.65 4 560
Number of total allocations 18.56 55.36 0 2,376
Accumulated precipitation 3,272.2 2,370.8 374.6 33,533

Panel B: SNR - Municipality (N = 866)

Total number of sales 12.38 24.56 0 292
Number of full sales 10.63 21.46 0 281
Number of partial sales 1.75 5.98 0 133
Number of Mortgages 2.57 7.48 0 172
Days of atypical temperature 277.24 56.38 96 566
Days of atypical high temperature 157.52 93.52 0 496
Days of atypical low temperature 119.72 90.29 0 564
Number of total allocations 436.52 675.85 0 6,550
Accumulated precipitation 3,539.9 2,836.1 372.2 42,287

Panel C: Land Registry - Municipality (N = 927)

Number of owners 2,516.2 2,151.27 18 18,768
Number of plots 2,518.6 2,347.8 17 21,482
Average farm size (ha.) 29.4 94.5 0.65 1,543.5
=1 if land registry update 0.07 0.25 0 1
Registered area (1000 ha.) 39,273.7 84,443.3 170.8 1,465,761
Days of atypical temperature 277.14 56.16 96 566
Days of atypical high temperature 157.68 93.43 0 496
Days of atypical low temperature 119.46 89.67 4 564
Accumulated precipitation 3,488.3 2,804.3 372.2 42,287

Panel D: ELCA - Household N = 3200

=1 if HH migrated 0.13 0.33 0 1
=1 if HH has land 0.89 0.31 0 1
=1 if farm size < 3 ha 0.78 0.41 0 1
Farm size (ha.) 2.49 5.54 0 118
Days of atypical high temperature 436.93 165.09 163 816
Days of atypical low temperature 67.03 62.45 0 254
Accumulated precipitation 3792.29 2625.24 720.06 21969.01

Notes: Summary statistics for each estimation sample. Panel A describes the variables used for vereda-level estimations. Total
number of sales includes full sales and partial sales during the year. Full sales correspond to sales where the entire property
is transferred to another owner. Partial sales correspond to sales that transfer only a fraction of the initial property to a new
owner. Number of total allocations corresponds to the cumulative sum of government-allocated plots in the vereda from 1901
until the year of observation. Panel B includes the same information but at municipality level. Panel C summarizes data used
for estimations on land distribution at municipality-year level. It takes number of owners, number of plots, average farm size,
total registered land and the indicator for land registry update from the national land registry carried out by IGAC. Panel D
summarizes data used for estimations at the household-year level. This data comes from 3 rounds (2010, 2013 and 2016) of
ELCA, a panel of rural households collected by Universidad de los Andes. Climate data used to compute the number of days
with shocks and the accumulated precipitation comes from the Copernicus Climate Change Service (C3S). Days with atypical
temperature shows the aggregate number of days across the two prior years (y − 2, y − 1) with either abnormally high or low
temperatures. Accumulated precipitation is the volume of rain in milliliters for year y.

2.4 Longitudinal Household Survey and Additional Data Sources

We complement the previous data sources with data from a household panel that we use to

analyze how farmers’ decisions change in response to temperature shocks. In particular, we
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use the Colombian Longitudinal Survey conducted by the Universidad de los Andes (ELCA).

The ELCA includes a sample of 4,800 rural households interviewed over three survey rounds

(a baseline collected in 2010 and two follow-ups in 2013 and 2016). The rural sample of

the ELCA is representative of small agricultural producers in four micro-regions: Atlantic,

Central, Coffee-Growing, and South. Within each region, municipalities and veredas were

randomly chosen. The baseline sample includes 17 municipalities and 224 veredas. In the

follow-up rounds enumerators resurveyed all households and, if the household had split off

or migrated, tracked the household head, spouse, and children under nine in 2010. The

attrition rate after three waves in 2016 was 13.5%. The household questionnaire collected

detailed information on land ownership and migration of household members which we use

to complement our empirical analysis. We are interested in how migration, farm size, land

ownership, and household consumption change in response to temperature shocks. Panel

D of 1 contains descriptive statistics of the ELCA panel. On average, 13% of households

migrated, 89% had any land and the average size of the plot was 2.5 hectares, 78% of farms

are smaller than 3 hectares.

Finally, we study if effects are heterogeneous according to different measures of income

and economic conditions of the municipalities. The availability of financial tools like credit

access should allow households to smooth consumption without having to sell their property.

Similarly, buffer savings and relatively high initial consumption levels (i.e. sufficiently away

from a subsistence threshold) should allow households to cope with shocks without having to

liquidate their landholdings. Therefore, we expect our results to be stronger in places with

higher poverty rates, that are less connected to markets, and that are more isolated and less

densely populated. To test this we use municipal-level information collected from CEDE at

Universidad de los Andes which consist of a multidimensional poverty measure (the index of

Unmet Basic Needs, UBN), a measure of driving distance to the nearest wholesale market,

and a rurality index based on measures of population density.9

3 Empirical Strategy

The empirical strategy uses the spatial and temporal variation in the occurrence of adverse

weather to estimate the effect of negative productivity shocks on land transactions and the

9We define municipalities as highly rural if they have a population below 25,000 inhabitants and have a
population density below 100 inhabitants per squared kilometer. These thresholds are used by the Colombian
government to categorize the ‘rurality degree’ of municipalities in Colombia. Under this definition close to
63% of municipalities are classified as highly rural.
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farm size. In our first specification we estimate the following equation:

sv,y = βTempShocksv,y +X ′v,yδ + ηv + κy + εv,y, (1)

where, sv,y is the log number of land sales or mortgages in vereda or municipality v in year

y, and Xv,y represents a vector of time-varying characteristics composed by rainfall levels in

the last three years (y, y − 1, and y − 2) and the cumulative number of plots allocated in

v from 1901 up to year y. This controls the availability of land for which we can observe

transactions.10 The model includes vereda (or municipality) fixed effects, ηv, that control for

time-invariant unobservables, and yearly fixed effects, θy, time specific shocks to land markets

common to all municipalities. As discussed in section 2.3, we define our measure of adverse

weather shocks as the sum of days with atypical temperatures (denoted as AtypicalDayv,d)

in the two years prior:

TempShocksv,y =

y−1∑
s=y−2

AtypicalDayv,s. (2)

Both the model in equation (1) and all subsequent specifications rely on the identifying

assumption that there are no vereda- or municipality-specific, time-varying unobservable

characteristics correlated to the occurrence of atypical weather events, i.e., conditional on

the set of fixed effects the occurrence of temperature shocks is as good as random; a standard

assumption in the literature (see e.g., Dell et al. (2014)). In section 4.2, we show that our

result are robust to specifications that include in addition state-specific time trends and to

alternative measures of atypical temperature computed using fixed thresholds. We cluster

standard errors in all regressions at the municipality level.

To measure the effect on the distribution of farm sizes we first estimate a model analogous

to the one in equation (1) above but using the land registry data. We estimate for

municipality m and year y, the model:

nm,y = ρTempShocksm,y +X ′m,yν + µm + κy + εv,y, (3)

where, nm,y is either the log number of land plots or land owners, or the log average or

median areas of plots and areas per owner in municipality m in year y.11 The vector of

controls Xm,y contains rainfall levels in the past three years, a dummy indicating if there was

10Regressions where the dependent variable is instead defined as the number of sales divided by cumulative
allocations yields qualitatively identical results.

11We define plots as a piece of land with a distinct registry number, an owner can have several –not
necessarily contiguous– plots.
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a cadastral update in the municipality that year, and the log of total municipal land area

recorded in the registry. Municipality and year fixed effects are represented by µm and κy,

respectively.

While the model in equation (3) allows us to estimate how productivity shocks have

an effect on different moments of the municipal farm-size distribution, it is not informative

on whether these changes are driven by the sale and transfer of farms of a specific size.

For example, a reduction in the average farm size within a municipality could be equally

driven by the fragmentation of large estates into medium-sized farms without there being

any change in the number of small farms, as by the fragmentation of small farms into even

smaller ones without having any change in the number of larger properties.

In order to investigate the type of farm size where the effect of negative productivity

shocks translates more strongly into property transfers, we estimate how the number of

owners within fixed farm-size bins changes across time. We do this by splitting the

distribution of farm sizes within each municipality by quantiles, such that each quantile

has, in the initial year of our sample, the same number of farm owners.12 Keeping these

quantile thresholds fixed, we then compute for each subsequent year the number of owners

within each bin. If, for example, average farm sizes are dropping due to the partition of

the largest plots, we would then observe a sharp reduction in the number of owners with

landholding areas at the –fixed– top quantile of the initial farm-size distribution.

Denote as {q1
m, ..., q

J
m} the areas defining each of the j quantiles of farm size distribution

in municipality m in the year 2000, and denote as AreaOwnedi,m,y the total landholdings of

farmer i in municipality m on year y. We compute for each year the number of owners with

total landholdings within each of these fixed size bins as:

NumOwnersqjm,m,y ≡
∑
i∈m

1·[AreaOwnedi,m,y ∈ (qj−1
m , qjm)], (4)

where j = 1, ..., J , and q0
m = 0 for all m. We use this variable to estimate independent

regressions (one per quantile j) of the form:

NumOwnersqjm,m,y = γjTempShocksm,y +X ′m,yξ
j + µj

m + κjy + ωj
v,y, (5)

where all the right-hand-side variables are the same as in

We finally estimate household-level regressions, using data from the ELCA survey, to

investigate the effect of adverse weather shocks on household’s decisions. We estimate the

12We take the initial distribution to be the year 2000, for which 97% of municipalities have registry
information. For the remaining municipalities, we take the initial distribution to be the one observed in the
first year in which they appear in the land registry dataset.
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model:

hi,v,y = αTempShocksv,y +X ′v,yτ + ιi + κy + ψv,y, (6)

where y = {2010, 2013, 2016}, and hi,m,y is either log per capita consumption, a dummy

indicating household migration, different measures of land ownership, or measures of work

outside agriculture. Xv,y represents rainfall levels in the past three years, ιi represents

household-level fixed effects and κy year fixed effects.

4 Results

4.1 Main Results

Table 2 presents the OLS estimates from equation (1) on our four measures of land

transactions. Columns 1 and 5 report the effect of weather shocks on all types of land

sales within veredas and municipalities respectively, while columns 2 and 6 report the effect

on sales that transfer the entire area of a plot to the new owner, which we denote as ‘full’

sales. Columns 3 and 7 report the effect on partial sales. Increases in the frequency of

adverse weather shocks raise the number of land transactions. This result holds regardless

of whether the observation unit is set at the municipality or at the vereda level. Land sales

caused by adverse shocks are entirely driven by full sales when the unit of observation is

set at the vereda level. By contrast, when observed at the municipality level, the effect on

partial sales is substantially higher. This disparity in the effect of shocks on partial land sales

might be related to unobserved characteristics related to the selected nature of the vereda

sample. For example, veredas with better record keeping practices which we are thus better

able to match in the data might be also richer or situated closer to urban centers. These

characteristics could also be the reason why the effect of shocks on partial sales (and more

generally on all types of transactions) is smaller than when compared to the –unselected–

municipality sample. Consistent with this hypothesis, results shown in section 4.3 below do

indicate that shocks have a stronger effect on transaction frequency in less densely populated

and more isolated regions.

Columns 4 and 8 of Table 2 show that adverse shocks lead to a substantial increase in

the number of mortgages taken out by farmers against their properties. In the case of the

municipality sample, the magnitude of the effect on mortgages is roughly 30% larger than

on total sales. While the use of mortgages is uncommon in rural Colombia (our data shows

that on average only 2.6 mortgage originations happen in a municipality per year) this result

clearly indicates that weather shocks lead farmers to look for ex-post mechanisms that allow
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Table 2: Temperature Shocks and Land Sales

Vereda level panel Municipality level panel

Total Full Partial Mortg. Total Full Partial Mortg.
(1) (2) (3) (4) (5) (6) (7) (8)

TempShocksv,y 0.020*** 0.022*** 0.003 0.022*** 0.076*** 0.088*** 0.116*** 0.104***
(0.006) (0.006) (0.005) (0.006) (0.021) (0.023) (0.028) (0.020)

Observations 149,664 149,664 149,664 149,664 10,392 10,392 10,392 10,392
R-Squared 0.574 0.561 0.359 0.392 0.912 0.903 0.710 0.793
Mean Dep. Var. 0.55 0.47 0.07 0.11 12.38 10.63 1.75 2.57

Notes: Data from the National Superintendency of Notaries (SNR) records. Columns 1 and 5 show the effect on total (full
+ partial land sales) columns 2 and 6 show the effect on full sales (when the entire property is transferred to another owner),
columns 3 and 7 show the effect on partial sales (when only a fraction of the plot is transferred), and columns 4 and 8 show
the effect on mortgage originations. All dependent variables are in log(x+1) transformation. The main independent variable is
the total number of atypical temperature days in the past two years (y − 1, y − 2) divided by 100. Controls are accumulated
allocations, accumulated precipitation during years y, y − 1, and y − 2. Regressions also include year and geographic fixed
effects (vereda or municipality). Mean Dep. Var. is the mean of the untransformed variable. Standard errors clustered at the
municipality level reported in parenthesis. ∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.

them to cope, and that it is in the absence of such mechanisms that land sales might become

a last resort measure. Indeed, heterogeneity results shown in section 4.3 show that in richer

municipalities mortgages as a response to shocks are roughly twice more likely to occur than

sales, while the opposite is true in poorer, more isolated municipalities.

The increases in the frequency of land sales caused by weather shocks further translates

into a reduction in average farm sizes. Table 3 presents the results of estimating equation (3)

on different measures of municipal land size using the land registry data. More days of

atypical temperature in a municipality during the previous two years lead to an increases

the number of plots and owners (columns 1 and 2), and thus to lower average farm and plot

sizes (columns 3 and 4). Taken together, the magnitudes of these effects are economically

important and suggest that the presence of uninsured covariate shocks play an important role

in determining land distribution patterns. An additional 100 days of atypical temperature

(roughly a two standard deviation increase) throughout a two-year period increase the

number of land purchases and mortgage originations in a municipality by 7.6% and 10.4%

respectively, while reducing the average farm size by 1.2%.

The results shown in Table 3 suggest that the net effect of weather shocks on land

distribution patterns is to increase fragmentation. However it is not possible to know from

that estimation alone if there is a specific part of the farm size distribution responsible

for the overall decrease in average area owned. In order to investigate this, we estimate

equation (5) on 10 quantiles of the initial municipality-level farm size distribution. The

coefficients of interest from these regressions are summarized in Figure 4. Negative weather

shocks cause a sizable increase in the number of owners with farms on the lower 5 deciles

16



of the initial distribution, but no statistically significant effect on the number of owners in

the 5 top deciles.13 This result shows that the observed reduction in mean farm sizes caused

by weather shocks is entirely driven by the subdivision and sale of smaller farms to new

owners that did not have any additional landholdings. The fact that there is no noticeable

change in the number of owners in the right part of the initial distribution indicates that

large landholders are not driven to sell their land after facing a weather shock. This result is

not surprising under the presumption that large landholders are more likely to have buffer

savings and better access to credit than small farmers. However, these results also show that

large landholders fail to use the expansion in land supply caused by adverse weather shocks

to increase their own landholdings (a fact shown in Figure 4 but, more generally, evidenced

as well in the previous set of results which show that average landholding area falls).

Table 3: Temperature Shocks and Average Farm Size

Number of Number of Mean Mean Median Median
Plots Owners Plot Size Area/Owner Plot Size Area/Owner

(1) (2) (3) (4) (5) (6)

TempShocksv,y 0.0120** 0.0120*** -0.0120** -0.0123*** -0.0164 -0.0126
(0.0048) (0.0045) (0.0048) (0.0046) (0.0113) (0.0089)

Observations 10,934 10,934 10,934 10,934 10,934 10,934
R-squared 0.9905 0.9920 0.9935 0.9947 0.9763 0.9881
mean.dep.var 2519 2516 30.50 29.36 15.22 12.88

Notes: Data from the National Land Registry (Catastro Nacional), mantained by the National Geographical Institute (IGAC).
All dependent variables are in logarithms. The main independent variable is the total number of atypical temperature days in
the past two years (y− 1, y− 2) divided by 100. Controls are accumulated allocations, accumulated precipitation during years
y, y− 1, and y− 2. Regressions also include year and geographic fixed effects (vereda or municipality). Mean Dep. Var. is the
mean of the untransformed variable. Standard errors clustered at the municipality level are reported in parenthesis. ∗p<0.1,
∗∗p<0.05, ∗∗∗p<0.01.

We also use data from the ELCA survey to explore if observed household-level decisions

in response to shocks are consistent with the aggregate patterns on land sales and farm size

distribution we document. Table 4 presents the results of estimating equation (6) on several

household-level variables for years 2010, 2013, and 2016. Column 1 shows that more days

of atypical temperature increase the probability that the household migrates, a result that

is consistent with Ibáñez et al. (2022), who show that households migrate in el Salvador in

response to temperature shocks. Column 2 shows an imprecisely estimated negative effect

of shocks on the size of the household farms, but columns 3 and 4 do show evidence that

shocks lead households to liquidate their landholdings and increase the likelihood that the

household farm has less that 3 hectares of land. Column 5 shows that a 100 day increase in

13Regression results in table form are in A1 in the appendix. Appendix Figure A5 shows analogous
estimations for alternative partitions (j = 5, and j = 20) of the initial farm size distribution.
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the number of days with harmful temperatures increases the probability of a household head

shifting from agricultural to non-agricultural activities by 7.7%, while column 6 shows that

there are no statistically significant effects on the probability that the household head works

off farm. Finally, column 7 shows that weather shocks have a sizable effect on the monetary

value of per-capita consumption –a 12.2% drop per 100 additional days–. This result suggest

that households are not able to fully smooth consumption.

Figure 4: Temperature Shocks and Number of Owners by Initial Distribution Quantiles

Notes: OLS estimates of the γ coefficients according to equation (5), for each of the 10 quantiles of the
initial municipality-level distribution of farm sizes. Each point estimate corresponds to a separate regression
where the main independent variable is the total number of atypical temperature days in the past two years
(y− 1, y− 2) divided by 100. The dependent variable is number of owners per quantile and is in logarithms.
Controls are accumulated allocations, accumulated precipitation during years y, y−1, and y−2. Regressions
include year and municipality fixed effects. Error bars display 95% confidence intervals for standard errors
clustered at the municipality level.

These micro-level responses to weather shocks are broadly consistent with the

distribution-wide effects on farm sizes presented above. Note that ELCA was designed

to cover and be representative of small agricultural producers, so the fact that we find that

these households are migrating and reallocating labor away from agriculture falls in line with

the result from Figure 4 showing that it is mostly farmers on the lower tail of the farm size

distribution the ones who respond to adverse shocks by asset liquidation.

4.2 Robustness

Appendix tables A2 and A3 present the results of two robustness checks that we perform.

First, we estimate our baseline specifications in equations 1 and 3 including state-specific

time trends. This allows us to rule out that spurious correlations between regional time
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Table 4: Temperature Shocks and Household Decisions

Household Farm Household Farm Size Sector Work Consumption
Migrated Size Has Land ≤ 3 ha Not Agri. off Farm per capita

(1) (2) (3) (4) (5) (6) (7)

TempShockv,y 0.064*** -0.126 -0.050*** 0.049*** 0.077** -0.010 -0.122***
(0.019) (0.088) (0.016) (0.019) (0.034) (0.023) (0.026)

Observations 12,124 10,756 11,987 12,124 7,523 12,124 10,884
R-squared 0.555 0.779 0.678 0.717 0.767 0.537 0.729
Mean Dep. Var. 0.107 2.875 0.900 0.777 0.242 0.749 2.665

Notes: Data from ELCA. Dependent variables are, from left to right: a dummy indicating if household migrated between
survey waves; area owned by the household in hectares; a dummy indicating if household owns any land; a dummy indicating
if household’s landholdings are below 3 hectares; a dummy indicating if household head works in the non-agricultural sector; a
dummy indicating if household head main economic activity happens outside the family farm; value of per capita consumption
in 2016 colombian pesos (in millions). All regressions include a control of aggregate rainfall and household-level fixed effects.
Mean Dep. Var. is the mean of the untransformed variable. Robust standard errors reported in parenthesis. ∗p<0.1, ∗∗p<0.05,
∗∗∗p<0.01.

trends of temperature shocks and our variables of interest are driving our results. As shown

in Panel A of both tables, the coefficient estimate on land sales (Table A2 ) and farm size

(Table A3) remain unchanged.

Second, we estimate equations 1 and 3 using an alternative measure of temperature

shocks. In particular, we follow Aguilar-Gomez et al. (2022), and we compute countrywide

temperature thresholds for atypically high and low temperatures. We use the distribution

of maximum and minimum daily temperatures across all municipalities over the sample

period and define high and low-temperature thresholds as the 95th and the 5th percentiles of

maximum and minimum temperatures, respectively. As in our main specifications, we then

add the total number of days with temperature above (below) the high (low) threshold over

a two-year window. Panel B of tables A2 and A3 show that our main results on land sales

and farm size are robust to this alternative definition of temperature shock.

4.3 Heterogeneity

In this section we explore the potential mechanisms that might drive our results on land

sales and farm size. Table 2 shows that weather shocks have a sizable impact on the number

of landholders that access credit by using their land as collateral. Being able to mortgage

property is not likely, however, to be accessible for most landholders in poorer and more

isolated economies where credit markets are less developed. Incomplete credit markets could

therefore be a potential driver behind our findings. Similarly, if households need to meet a

minimum subsistence consumption threshold, the ability to cope with drops in income by

cutting back on expenses is more reduced the closer the initial consumption levels are to the
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subsistence threshold. Faced with a shock, poorer households should be then more likely

to be forced to liquidate their assets in order to maintain a minimum consumption level.

We would expect households in poorer municipalities to respond more strongly to shocks

through land sales and, by contrast, we would expect households in richer municipalities to

respond more strongly through mortgage originations.

We show in Table 5 the result of estimating equation (1) with an additional interaction

term indicating if a municipality is i) above the median in a multidimensional poverty index

calculated by the national government, ii) above the median in the distance required to reach

a wholesale market, and iii) above the median in a ‘rurality’ index measuring low population

density. Consistent with the hypothesis of credit constraints, results in column 4 show

that the positive effect of shocks on mortgage originations in high poverty municipalities is

roughly three times smaller than the size of the effect in low poverty municipalities. Similarly,

columns 8 and 12 show that this same effect on mortgages in municipalities with above-

median distance to wholesale markets or with low population density is roughly half the size

of the effect observed in municipalities with stronger market access and higher population

densities. We take these results as suggestive evidence of the potential for credit markets to

prevent distress sales.
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Table 5: Temperature Shocks and Land Sales - Heterogeneous Effects

Hi: High Multipoverty Index Hi: High Distance to Market Hi: Low Population Density

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Total Full Partial Mortgage Total Full Partial Mortgage Total Full Partial Mortgage

TempShocksv,y 0.0894∗∗∗ 0.102∗∗∗ 0.142∗∗∗ 0.169∗∗∗ 0.0727∗∗∗ 0.105∗∗∗ 0.0872∗∗∗ 0.151∗∗∗ 0.0403 0.0574∗∗ 0.0946∗∗∗ 0.161∗∗∗

(3.66) (3.96) (4.47) (6.82) (2.96) (3.99) (2.84) (6.29) (1.56) (2.04) (2.86) (6.52)

TempShocksv,y ×Hi -0.0184 -0.0226 -0.0275 -0.113∗∗∗ 0.00560 -0.0291 0.0502∗ -0.0828∗∗∗ 0.0554∗∗ 0.0477∗ 0.0330 -0.0898∗∗∗

(-0.77) (-0.95) (-0.96) (-5.01) (0.24) (-1.24) (1.84) (-3.77) (2.28) (1.92) (1.16) (-4.03)
Observations 9924 9924 9924 9924 10392 10392 10392 10392 10392 10392 10392 10392
R-Squared 0.913 0.904 0.710 0.794 0.912 0.903 0.711 0.794 0.912 0.903 0.710 0.794

Notes: Data from the National Superintendency of Notaries (SNR) records. Columns 1 and 5 show the effect on total (full + partial land sales) columns 2 and 6 show the
effect on full sales (when the entire property is transferred to another owner), columns 3 and 7 show the effect on partial sales (when only a fraction of the plot is transferred),
and columns 4 and 8 show the effect on mortgage originations. All dependent variables are in log(x+1) transformation. The main independent variable is the total number
of atypical temperature days in the past two years (y − 1, y − 2) divided by 100. Controls are accumulated allocations, accumulated precipitation during years y, y − 1, and
y − 2. Regressions also include year and geographic fixed effects (vereda or municipality). Standard errors clustered at the municipality level reported in parenthesis. ∗p<0.1,
∗∗p<0.05, ∗∗∗p<0.01.
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The previous results shed light on poverty and credit constraints as potential mechanisms

driving distress sales. These, however, do not necessarily imply land fragmentation. For

example, it is possible that large landowners, who are likely to be less credit-constrained,

buy land from poor farmers after the shock. This, contrary to our findings, could lead

to land consolidation. We now explore if transaction costs that result from the lack of

contiguity between large and small farms hinder this process of land consolidation and drive

the decreases in farm size that we observe in the data.

We construct two measures of contiguity between large and small farms in a municipality.

First, we use land registry maps, available for 2017, to compute the share of plots below the

10th percentile of the size distribution in the municipality that are contiguous to at least one

plot above the 90th percentile of this distribution. We then classify municipalities with high

contiguity as those with a share above the national median. We also carry out the same

exercise using as alternative thresholds the 20th and 80th percentiles of the distribution.

Our second measure uses the GPS coordinates of the farms included in the 2013

agricultural census. We compute buffers around this GPS coordinates to simulate 1.2 times

the area of each farm and define as contiguous two farms with overlapping buffers. Using

this measure, we compute the share of small farms that are contiguous to at least one large

farm. As before, we define small farms as those below the 10th percentile of the municipality

size distribution and large farms as those above the 90th percentile, and we conduct the same

analysis varying these thresholds to the 20th and 80th percentiles respectively.

Table 6 presents the results of estimating equation 3, with the interaction between the

temperature shocks and farm contiguity. Panel A presents the results with the measure

we compute with the registry maps. Panel B uses the measure of the overlapping buffers.

Odd-numbered columns show results for the 90th-10th percentile definition of large and small

plots, while even-numbered columns show results for the 80th-20th percentile definition. As

shown in both panels, the coefficient estimates for the temperature shocks have the same
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sign and statistical significance as in our baseline specification. The interaction term is small

in magnitude and not statistically significant regardless of the measure of contiguity. This

result suggests that transaction costs associated with the lack of contiguity between large

and small farms might not be driving land fragmentation in this context.

Table 6: Temperature Shocks and Farm Size - Heterogeneous Effects

Number of Numbers of Mean Mean
Plots Owners Plot Size Area/Owner

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Land Registry Map - Contiguous Plots

TempShocksv,y 0.011** 0.011* 0.010* 0.009* -0.011** -0.011* -0.010** -0.009*
(0.006) (0.006) (0.005) (0.005) (0.006) (0.006) (0.005) (0.005)

TempShocksv,y ×High -0.005 -0.004 -0.004 -0.002 0.005 0.004 0.004 0.001
(0.006) (0.006) (0.005) (0.005) (0.006) (0.006) (0.005) (0.005)

Observations 10,413 10,448 10,413 10,448 10,413 10,448 10,413 10,448
R-squared 0.990 0.990 0.992 0.992 0.994 0.994 0.995 0.995
Mean Dep. Var 2,576.47 2,568.60 2,582.51 2,574.54 30.41 30.40 29.16 29.16

Panel B: Agricultural Census Coordinates - Overlapping Buffers

TempShocksv,y 0.016*** 0.018*** 0.016*** 0.017*** -0.016*** -0.018*** -0.017*** -0.017***
(0.006) (0.006) (0.006) (0.005) (0.006) (0.006) (0.006) (0.005)

TempShocksv,y ×High -0.006 -0.009 -0.003 -0.004 0.006 0.009 0.003 0.004
(0.006) (0.006) (0.005) (0.005) (0.006) (0.006) (0.005) (0.005)

Observations 9,402 9,402 9,402 9,402 9,402 9,402 9,402 9,402
R-squared 0.990 0.990 0.992 0.992 0.993 0.993 0.995 0.995
Mean Dep. Var 2,552.60 2,552.60 2,548.64 2,548.64 29.27 29.27 28.23 28.23

Notes: Data from the National Land Registry (Catastro Nacional), mantained by the National Geographical Institute (IGAC).
All dependent variables are in logarithms. The main independent variable is the total number of atypical temperature days
in the past two years (y − 1, y − 2) divided by 100. Controls are accumulated allocations, accumulated precipitation during
years y, y − 1, and y − 2. Regressions also include year and geographic fixed effects (vereda or municipality). Panels A and B
use land registry maps and agricultural census data, repsectively, to measure plot contiguity. Odd-numbered columns in both
panels show results for the 90th-10th percentile definition of large and small plots, while even-numbered columns show results
for the 80th-20th percentile definition. See text for more details. Mean Dep. Var. is the mean of the untransformed variable.
Standard errors clustered at the municipality level are reported in parenthesis. ∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.

5 Model

To rationalize the reduced-form results in Section 4, we now develop a model of agricultural

production in which heterogeneous agents own and transact land. A key feature of the model

is that land sales serves as a consumption smoothing device, which is triggered by subsistence

consumption motives when the agricultural sector is subject to a negative weather shock.

We next present the environment of the model, we then simulate the impact of negative
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weather shocks in the economy.

5.1 Environment

Consider a small-open economy region with two sectors, agriculture and non-agriculture, that

operates over two periods t1, t2. There are a measure of agents N who are heterogeneous in

terms of their endowments of two distinct assets: land (l0) and wealth (m0). In each period,

agents choose whether to be a worker in the non-agricultural sector or a farmer.

Output in the agricultural sector employs land:

yt(l) = atl

where yt(l) is the total output, at is the productivity of land and l is the employed land. The

productivity parameter at is subject to two weather conditions, high aH and low L (aL > aH).

If agents choose to be a farmer, they earn the agricultural output of their landholdings yt(l).

If they choose to become a worker, they earn wages wt = w. Moreover, in each period, agents

earn the returns from their wealth rtmt(ω), where we assume an exogenous return rt = r.

Preferences are Stone-Geary:

U =
∑

t={1,2}

log (ct − cS)

where cS is a subsistence consumption level. Budget constraints for each period are:

ft [atlt] + (1− ft) [wt] + rtmt−1 = ct +mt + pt (lt − lt−1)

where ft is an indicator function equal to 1 if the agent choose to be a farmer and 0 otherwise.

On the left hand side we have the earnings of the agent in period t. On the right hand side

we have the expenditure of agents. Agents choose how much to consume (ct), how much

wealth to acquire (mt), and how much land to own (lt). If they choose to own more land

than the one inherited from t− 1—i.e., if lt− lt−1 > 0—, they must purchase land by a price

pt. Conversely, they can sell land and collect pt (lt − lt−1)—if lt − lt−1 < 0. We impose two

borrowing constraints:

0 ≤ lt

0 ≤ mt.

In other words, agents are unable to sell more land than they inherited. In addition, agents
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are unable to borrow wealth.

The timing of the model is as follows. First, agents observe the weather conditions for

the next two periods, their initial endowments of land l0 and wealth m0, and choose whether

to become a worker or a farmer. (For simplicity, we assume that agents can choose only

one occupation for the two period, so that f1 = f2.) Then, in each period t, they collect

their earnings from work (wt), from land (atlt), and from accumulated wealth (rtmt−1), and

choose how much to consume.

5.2 Equilibrium

We define the market equilibrium as follows. Given a distribution of land and wealth

endowments {l0, m0}, a total land a sequence of weather events {at}, wages {wt}, and

returns to wealth {rt}, the market equilibrium is a sequence of consumption, wealth, land

ownership and land prices, {c∗t , l∗t ,m∗t , p∗t} such that all agents make optimal choices and the

following market clearing condition holds∫
lt(ω)dF (ω) =

∫
lt−1(ω)dF (ω)

where ω indexes an agent and F (ω) is the distribution of agents.

5.3 Land transactions under adverse weather shocks

To observe any land transaction between agents, it must be the case that the wealth asset

has an intermediate rate of return that lies in-between the low agricultural productivity aL

in t = 1 and the high productivity aH in t = 2. We thus impose the conditions: r1 ≥ aL, and

r2 < aH/(p1 − aL). Under these conditions agents who decide to become farmers will hold

all of their wealth in land, and conversely agents who decide to become non-farm workers

will hold all of their wealth in the alternative asset.14

Optimal input demands for farmers are then:

l∗1,F =
1

2(p1 − aL)

[
(2aL − p1)l0 + r1m0 +

(p1 − aH − aL)

aH
cS

]
m∗1,F = 0,

14The knife-edge case where r2 = aH/(p1 − aL) does allow for agents simultaneously demanding positive
amounts of both assets. For ease of exposition we abstract away from this case.
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which yields utility

U∗F = log
(
aLl0 + r1m0 − (p1 − aL) l∗1,F − cS

)
+ log

(
aH
(
l0 + l∗1,F

)
− cS

)
.

For their part, optimal input demands for workers are:

l∗1,W = −l0

m∗1,W =
1

2r2

[r1r2m0 + r2p1l0 + (1− r2)(cS − w)]

with utility

U∗W = log
(
r1m0 + w −m∗1,W − cS

)
+ log

(
w + r2m

∗
1,W − cS

)
.

An agent chooses to become a farmer if U∗F ≥ U∗W .

5.4 Simulation Results

We simulate the economy described above and document the changes in the equilibrium

farm size distribution with respect to initial endowments. Results from this exercise are

shown in Figure 5. The simulated economy is able to replicate the main reduced-form

results presented in Section 4. First, as shown in the upper-left panel of Figure 5, the initial

shock to productivity in t = 1 induces a net increase in the number of agents occupied in

the agricultural sector and a decrease in the average size of individual farms. Second, also

consistent with our empirical findings, the upper-right panel of the same figure shows that

this result is almost entirely driven by the increase in the number of agents operating smaller-

sized farms, with almost no variation in the number of landholders operating farms in the

upper quintiles of the initial size distribution. Third, the bottom-right panel of the figure

also shows how, despite an observed net-increase in the number of farmers, the productivity

shock does lead a fraction of the smallest initial landholders to exit agriculture altogether.

Finally, the bottom-left panel shows that the observed effects of the shock on the farm size

distribution are more pronounced in underdeveloped economies, where we parameterize an

economy to be ‘poorer’ if it has a relatively higher subsistence constraint.
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Figure 5: Change in Farm Size Distribution - Simulation Results

Notes: Simulated distribution of equilibrium farm sizes with respect to initial endowments. The simulated
economy consists of 300 agents with asset endowments drawn from a log-normal distribution with mean = 0
and standard deviation = 1. Top Left Panel: Blue solid line shows the distribution of land endowments before
trade occurs. Red solid line shows the equilibrium farm size distribution in t = 2. Dashed lines represent
average farm sizes. Top Right panel: Percentage change in the number of agents occupied in agriculture by
quintiles of the initial land distribution. Bottom Left Panel: Blue solid line shows the distribution of land
endowments before trade occurs. Red solid line shows the equilibrium farm size distribution in t = 2 for a
‘’poor’ economy parameterized as having a high subsistence constraint cS = 0.45. Yellow solid line shows the
equilibrium farm size distribution in t = 2 for a ‘rich’ economy parameterized as having a low subsistence
constraint cS = 0.15. Dashed lines represent average farm sizes. Bottom Right Panel: Percent change
in landholdings after trade for agents initially endowed with land. Additional parameter values: aL = 1;
aH = 5; r1 = 1; r2 = 1; cS = {0.45, 0.15}; w = 0.5

5.5 Discussion

A key result of the model is that a fraction of agents initially endowed with land will exit

agriculture despite the absence of uncertainty, and the fact that all agents are aware that

productivity will be higher in the second period. This behavior is driven instead by the

27



fact that agents with the lowest land endowments run against the subsistence consumption

constraint and are forced to forego higher consumption in the future to achieve minimum

consumption levels in the present. This need to smooth consumption across periods leads to

an increase in aggregate land supply and an initial depression of land prices. Faced with the

opportunity to acquire relatively cheap assets, both large farmers and agents not initially

endowed with land have incentives to increase their landholdings. Under similar conditions,

any version of a farm-production model that lacks a non-farm sector will necessarily yield

as a result the consolidation of small farms into larger holdings and an increase in average

farm size. By contrast, the model presented above is capable of yielding land fragmentation

as a result due to the fact that the non-farm sector is unaffected by the initial slump in

productivity. Being isolated from the shock, and thus becoming richer relative to landholders,

agents endowed with large amounts of the alternative ‘wealth’ asset are able to outbid large

landholders for the excess land supply and enter the soon-to-be more profitable agricultural

sector.

An important feature of this version of the model is that agent heterogeneity is solely

driven by differences in initial endowments and not by differences in relative productivity.

This entails that, as it stands, all observed changes in asset ownership and on the operational

scale of farms have no implications for the aggregate productivity of the economy. A more

comprehensive version of this model that allows for heterogeneous productivity across farmers

might be able to produce richer predictions related to specific selection effects caused by

shocks and the consequences these can have on the aggregate efficiency of the agricultural

sector.

More generally, and in order to gauge both the impact of the increasing risk of extreme

weather shocks induced by climate change on agricultural productivity, as well as the

aggregate impact of the expansion of rural-credit or agricultural insurance programs, we

further plan to develop and structurally estimate a model of agricultural production that

combines the farm production structure developed in Gáfaro and Pellegrina (2022) with the

borrowing frictions modeled in the macro-literature on heterogeneous agent models (Krusell

and Smith, 1998; Buera et al., 2011). Our goal will be to inform the behavioral parameters of

the model driving agents’ decisions to sell and buy agricultural land, and derive a set of results

that can indicate under which conditions the model rationalizes the qualitative features of

the data. These behavioral parameters should then allow us to estimate policy-relevant

counterfactuals of interest that shed light on the potential effects that future increases in

weather shock frequency and severity will have on land-distribution patterns and agricultural

productivity in developing economies.
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6 Conclusion

This paper explores the effect of uninsured weather shocks on distress sales and the farm

size in Colombia. Exploiting a unique combination of datasets that include the transaction

history of hundreds of thousands of individual plots and a municipal-level census of rural

properties we find that shocks lead to an increase in the frequency of land sales and

to a reduction in average farm size. This reduction is driven by the smaller farms in

the initial farm-size distribution being further subdivided and purchased by previously

landless individuals. Consistent with the aggregate patterns we find on land sales and land

distribution, we also show that these shocks decrease household consumption and induce rural

households to migrate, engage in non-agricultural activities, and operate smaller farms.

Distress sales after a negative covariate productivity shocks might depress land prices.

However, a standard heterogeneous-agent model with credit market imperfections would

predict that this excess supply of land should lead to the consolidation of many small farms

into larger landholdings. Our results are at first glance puzzling since we show that the

opposite effect, land fragmentation, takes place. We rationalize the results with a model

where agents have to make an intertemporal consumption decision while facing a minimum

subsistence constraint, and heterogeneity in initial endowments causes some agents to be

isolated from the initial negative productivity shock. The combination of the shock and the

subsistence constraint induces an expansion of the aggregate supply of land; the presence

of relatively wealthier landless agents who find themselves unaffected by the shock and who

can profit from the temporary drop in land values then leads to a net increase in the number

of agents occupied in agriculture and to lower average farm sizes.

Our empirical findings could be explained by an alternative model where, for example,

frictions on land assembly stemming from the potential non-contiguous character of land

plots for sale are present (e.g. Brooks and Lutz (2016)). Identifying the specific mechanisms

that prevent land from becoming endogenously consolidated would greatly improve our

understanding on the organization of economic activity in the agricultural sector of much

of the developing world. The evidence that we present in this paper suggests that

uninsured weather shocks constitute a substantial barrier for productivity improvements

in the agricultural sector of developing countries. Given that extreme temperature shocks

are expected to increase in frequency and severity in the near future, these findings have

important policy implications related to the expansion of financial tools designed for risk

management in rural settings.
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APPENDIX

(for online publication)

Appendix A Additional Tables and Figures

Figure A1: Mean and Median Allocation Size - 1961–2012

Notes: Data from the System of Information for Rural Development (SIDER). National-level yearly average
area of land plots granted by the government as part of the public-land allocation program.

Figure A2: Number of Allocations (SIDER) vs. Number of Registrations (SNR)

Notes: Data from the System of Information for Rural Development (SIDER) and from the National
Superintendency of Notaries (SNR). The figure compares the number of land plots allocated by the
government as part of the public-land allocation program with the number of properties registered at local
public notary offices as received by the government. Property registration constitutes the final step to finalize
the allocation process and ensures the formal property right of the beneficiary over the granted plot of land.
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Figure A3: Temperature Shocks Across Space - 2000 and 2010

(a) Shocks in 2000

(b) Shocks in 2010

Notes: Data from the Copernicus Climate Change Service (C3S). The figure shows the average number of
days with extreme heat (red) and cold (blue) across veredas in our sample in 2000 and 2010.
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Figure A4: Temperature Shocks Across Time

Notes: Data from the Copernicus Climate Change Service (C3S). The figure shows the average number of
days with extreme heat (red) and cold (blue) across veredas in our sample for the 1979–2016 period.

Table A1: Temperature Shocks and Number of owners, by Initial Size Quantile

Number of owners by initial distribution quantiles (qjm)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
q1m q2m q3m q4m q5m q6m q7m q8m q9m q10m

TempShocksv,y 0.029∗ 0.016 0.024∗∗∗ 0.015∗∗ 0.020∗∗∗ 0.005 0.005 -0.004 -0.005 -0.000
(0.015) (0.010) (0.008) (0.008) (0.006) (0.007) (0.006) (0.005) (0.006) (0.004)

Observations 10915 10878 10853 10804 10907 10869 10928 10892 10907 10928
R2 0.942 0.971 0.982 0.983 0.987 0.986 0.986 0.991 0.990 0.993

Notes: Data from the National Land Registry (Catastro Nacional), mantained by the National Geographical Institute (IGAC).
Dependent variables are number of owners whose farm are is in the corresponding size range defined by the quantiles of
the initial farm distribution. Dependent variables are in logarithms. The main independent variable is the total number of
atypical temperature days in the past two years (y−1, y−2) divided by 100. Controls are accumulated allocations, accumulated
precipitation during years y, y−1, and y−2. Regressions also include year and geographic fixed effects (vereda or municipality).
Mean Dep. Var. is the mean of the untransformed variable. Standard errors clustered at the municipality level are reported in
parenthesis. ∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.
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Figure A5: Temperature Shocks and Number of Owners by Initial Distribution Quantiles -
Alternative Partitions

Notes: OLS estimates of the γ coefficients according to equation (5). Top panel: coefficient values for 5
quantiles of the initial municipality-level distribution of farm sizes. Bottom panel: coefficient values for 20
quantiles of the initial municipality-level distribution of farm sizes. Each point estimate corresponds to a
separate regression where the main independent variable is the total number of atypical temperature days
in the past two years (y − 1, y − 2) divided by 100. Controls are accumulated allocations, accumulated
precipitation during years y, y− 1, and y− 2. Regressions include year and municipality fixed effects. Error
bars display 95% confidence intervals for standard errors clustered at the municipality level.
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Table A2: Temperature Shocks and Land Sales - Alternative Specifications

Municipality level panel Vereda level panel

Total Full Partial Mortg. Total Full Partial Mortg.

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: State Specific Time Trends

TempShocksv,y 0.076*** 0.087*** 0.115*** 0.103*** 0.020*** 0.022*** 0.003 0.022***
(0.021) (0.023) (0.028) (0.020) (0.006) (0.006) (0.005) (0.006)

Observations 10,392 10,392 10,392 10,392 149,652 149,652 149,652 149,652
R-squared 0.912 0.903 0.710 0.794 0.574 0.562 0.360 0.393
Mean Dep. Var 1.54 1.44 0.44 0.64 0.24 0.22 0.04 0.06

Panel B: Temperature Shocks with Absolute Thresholds

TempShocksAbsv,y 0.070** 0.108*** 0.001 0.004 0.015 0.021*** -0.005 0.016*
(0.028) (0.029) (0.029) (0.031) (0.009) (0.008) (0.007) (0.009)

Observations 10,392 10,392 10,392 10,392 149,652 149,652 149,652 149,652
R-squared 0.912 0.903 0.709 0.793 0.574 0.562 0.360 0.392
Mean Dep. Var 1.54 1.44 0.44 0.64 0.24 0.22 0.04 0.06

Notes: Data from the National Superintendency of Notaries (SNR) records. Columns 1 and 5 show the effect on total (full
+ partial land sales) columns 2 and 6 show the effect on full sales (when the entire property is transferred to another owner),
columns 3 and 7 show the effect on partial sales (when only a fraction of the plot is transferred), and columns 4 and 8 show
the effect on mortgage originations. All dependent variables are in log(x+1) transformation. The main independent variable is
the total number of atypical temperature days in the past two years (y − 1, y − 2) divided by 100. Controls are accumulated
allocations, accumulated precipitation during years y, y − 1, and y − 2. Regressions also include year and geographic fixed
effects (vereda or municipality). Panel A adds state specific time trends. Panel B uses country level absolute thresholds to
identify days of atypical temperature. Mean Dep. Var. is the mean of the untransformed variable. Standard errors clustered
at the municipality level reported in parenthesis. ∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.
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Table A3: Temperature Shocks and Average Farm Size - Alternative Specifications

Number of Numbers of Mean Mean Median Median
Plots Owners Plot Size Area/Owner Plot Size Area/Owner

(1) (2) (3) (4) (5) (6)

Panel A: State Specific Time Trends

TempShocksv,y 0.012** 0.013*** -0.012** -0.013*** -0.017 -0.013
(0.005) (0.005) (0.005) (0.005) (0.012) (0.009)

Observations 10,935 10,935 10,935 10,935 10,935 10,935
R-squared 0.990 0.992 0.994 0.995 0.976 0.988
Mean Dep. Var 2,518.49 2,516.07 30.49 29.36 15.22 12.88

Panel B: Temperature Shocks with Absolute Thresholds

TempShocksAbsv,y 0.023** 0.016* -0.023** -0.020** -0.032* -0.012
(0.009) (0.009) (0.009) (0.009) (0.016) (0.012)

Observations 10,935 10,935 10,935 10,935 10,935 10,935
R-squared 0.990 0.992 0.994 0.995 0.976 0.988
Mean Dep. Var 2,518.49 2,516.07 30.49 29.36 15.22 12.88

Notes: Data from the National Land Registry (Catastro Nacional), mantained by the National Geographical Institute (IGAC).
All dependent variables are in logarithms. The main independent variable is the total number of atypical temperature days
in the past two years (y − 1, y − 2) divided by 100. Controls are accumulated allocations, accumulated precipitation during
years y, y − 1, and y − 2. Regressions also include year and geographic fixed effects (vereda or municipality). Panel A adds
state specific time trends. Panel B uses country level absolute thresholds to identify days of atypical temperature. Mean Dep.
Var. is the mean of the untransformed variable. Standard errors clustered at the municipality level are reported in parenthesis.
∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.
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Appendix B The Land Ceiling Regulation

Finally, we investigate if our results on the absence of land consolidation on the part of

large landholders in the aftermath of an adverse weather shock is due to institutional factors

stemming from Colombia’s land regulation policies. As discussed in section 2, Law 160 of

1994 imposed municipality-specific land ceilings that place a cap on the amount of land

originally granted by the government that any private individual can accumulate. This

restriction could be consistent explanation for the lack of land consolidation on the right

part of the farm size distribution, since it restricts the capacity of large landholders to

acquire any new land plots whose provenance was a government allocation.15

To test if these restrictions are in fact explaining our results, we re-estimate the model

in (3) including an additional interaction term between the shock variable and a dummy

indicating if the municipality is above the median in the share of the municipality’s area

that was at some point part of a government allocation. The idea behind this test lies in the

fact that land ceilings only apply to allocated land, but not to other land plots. Hence, if

restrictions are driving the land-fragmentation results shown in Table 3 we would expect the

bulk of the result to be concentrated in municipalities with a high share of their agricultural

land coming from government allocations.

As columns 5-8 in Table A4 show, we find no such heterogeneity. Moreover, as shown

in columns 1-4, including the continuous value of the share of government-allocated land as

a control has virtually no impact on the magnitude or precision of the original estimates.

We take these results as evidence that the main findings of our paper are not driven by the

specific institutional characteristics of land regulation in Colombia.

15The explicit purpose of the land ceilings, as stated in the text of the law, was precisely to prevent land
concentration by large landholders.
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Table A4: Temperature Shocks, Farm Size, and Share of Government-Allocated Area

Control: Share Allocated Hi: Share Allocated

Number of Number of Mean Mean Number of Number of Mean Mean
Farms Owners Farm Size Area/Owner Farms Owners Farm Size Area/Owner

(1) (2) (3) (4) (5) (6) (7) (8)

TempShocksv,y 0.0113** 0.0112** -0.0113** -0.0115** 0.0134*** 0.0116** -0.0134*** -0.0119**
(0.0049) (0.0046) (0.0049) (0.0047) (0.0048) (0.0046) (0.0048) (0.0046)

TempShocksv,y ×Hi -0.0068 -0.0013 0.0068 0.0012
(0.0092) (0.0080) (0.0092) (0.0080)

Observations 10,934 10,934 10,934 10,934 10,935 10,935 10,935 10,935
R-squared 0.9905 0.9920 0.9935 0.9947 0.9905 0.9921 0.9935 0.9948
mean.dep.var 2519 2516 30.50 29.36 2518 2516 30.49 29.36
Share alloc. Yes Yes Yes Yes No No No No

Notes: Data from the National Land Registry (Catastro Nacional), maintained by the National Geographical Institute (IGAC).
All dependent variables are in logarithms. The main independent variable is the total number of atypical temperature days in
the past two years (y− 1, y− 2) divided by 100. Controls are accumulated allocations, accumulated precipitation during years
y, y− 1, and y− 2. Regressions also include year and geographic fixed effects (vereda or municipality). Mean Dep. Var. is the
mean of the untransformed variable. Standard errors clustered at the municipality level are reported in parenthesis. ∗p<0.1,
∗∗p<0.05, ∗∗∗p<0.01.
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