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Abstract

In light of the consequences of deforestation 
in the Brazilian Amazon for climate change 
and biodiversity erosion at global and 
regional scales, this study explores future 
deforestation scenarios, their application 
in a publicly available online dashboard 
[https://forestatrisk.ipam.org.br], and 
relationships with public policies. We 
move beyond deforestation projections, 
which use a constant rate or moving 
average assumptions to describe the 
historical reference level (HRL). Instead, 
we project deforestation using a novel 
business-as-usual (BAU) baseline, which 
predicts the amount of forest loss due to 
macroeconomic factors alone. We then 
develop a policy scenario with stronger 
conservation effort, where non-designated 
public forests are designated as protected 
areas (GOV). We estimate our model using 
data from 1999 to 2021, validate using 
data from 2022 and forecast deforestation 
and its spatial allocation from 2023 to 
2025. Total observed deforestation area 
is 32% larger in 2022 compared to the 
BAU baseline, likely indicating weakened 
forest governance in 2018-2022. Still, 
we find a good spatial allocation match 

between modelled BAU deforestation 
areas and observed deforestation areas, 
with an overall mean spatial accuracy 
corresponding to 80% with a 12 x 12 km 
window size, and 90% with a 20x20 km. If 
deforestation would continue at the HRL 
rate, we would accumulate 35% more 
deforestation until 2025 than what we 
estimate for our preferred BAU baseline, 
indicating that macroeconomic conditions 
are projected to be conducive for reduced 
deforestation. All models show large areas 
of expected deforestation concentrated 
in central Pará (PA) and in southern 
Amazonas (AM), especially along the main 
roads. Another smaller deforestation patch 
is observed along the border between the 
Brazilian Amazon and the Cerrado Biome, 
an older deforestation frontier. In the GOV 
scenario we simulate that leakage to other 
areas mainly occurs in rural settlements 
and rural properties. The study contributes 
to a better understanding of the factors 
influencing the amount of deforestation 
and its distribution in time and space. The 
spatially explicit model can help identify 
risk areas for targeted policy responses 
as well as shed light on where leakage 
can be expected when local protection 
mechanisms are enforced.
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1. Introduction

Native vegetation clearing has emerged as one of the most significant environmental 
challenges of our time. The consequences are disruptive in a coupled human–environment 
system, affecting a range of ecosystem services, including lacking support to biodiversity 
and climate regulation (MEA, 2005; Shukla et al. 1990). Agriculture, Forestry and Other 
Land Use are responsible for 23% of greenhouse gas emissions (GHG) in the world every 
year and 49% of this GHG is emitted yearly in Brazil (SEEG, 2023). Still, clearings are part of 
human actions promoting local economic activities related to natural resource extraction, 
agriculture expansion and land speculation, among others. With the discussion about 
different mechanisms to reduce deforestation, we show how macroeconomic cycles can 
drive deforestation dynamics and how interventions towards conservation can affect these 
dynamics. 

Economic conditions impact deforestation by changing the relative prices of products and 
production factors (labor, capital, and land). Macroeconomic factors include commodity 
prices and exchange rates: higher commodity prices fuel demand for agricultural land at 
the expense of natural forests (Assunção et al. 2015, Curtis et al. 2018, Ferreiro Filho & 
Hanusch, 2022); a depreciating real exchange rate raises the external competitiveness of 
Brazilian agriculture and also raises the demand for agricultural land (Arcand et al. 2008, 
Richards et al. 2012, Garcia et al. 2019, Hanusch 2023). With respect to the spatial allocation 
of deforestation, microeconomic factors of local conditions are important, as reviewed in 
a recent meta-analysis covering 320 spatially explicit studies from 1996 to 2019 (Busch 
and Ferretti-Gallon 2023). In the context of the Legal Amazon, important factors include 
biophysical conditions or measures that, for example, improve market access to Amazon 
farmers (such as rural roads), reduce the cost of production (such as subsidies), or impact 
land tenure (Cattaneo 2001, Roebeling & Hendrix 2010, Vilela et al. 2020, World Bank 2021, 
Porcher and Hanusch 2022, Hanusch 2023, Assunção et al. 2023). While macroeconomic 
factors tend to impact deforestation in the aggregate, microeconomic factors often have a 
strong spatial dimension (e.g., the varying quality of agricultural lands across the Amazon 
or the location of roads). This is not to say that policy choices do not matter, but simply to 
acknowledge the fact that deforestation is a choice based on economic trade-offs.

Our study contributes to this literature by combining a spatially explicit model of deforestation 
with a macroeconomic time-series model suitable to estimate counterfactual deforestation 
net of policy efforts. This allows us to create a spatially explicit baseline forecast for 
deforestation, generate insights into how much deforestation can be expected in a near future 
and where it is likely to occur and use this as a basis for scenario analyses to see how policy 
measures could affect deforestation dynamics. We estimate our model for the nine Brazilian 
states comprising the Legal Amazon, including Acre, Amapá, Amazonas, Mato Grosso, Pará, 
Rondônia, Roraima, Tocantins, and (parts of) Maranhão. Our results are accessible through 
an innovative, interactive online dashboard [https://forestatrisk.ipam.org.br].
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Mechanisms to reduce deforestation have been implemented in the Amazon with different 
levels of success. Public policies are certainly responsible for significant past reductions in 
deforestation – the Plan for Prevention and Control of Deforestation in the Legal Amazon 
(PPCDAm) is an exemplary case of success involving a multisectoral execution plan. It 
involved actions such as enforcement of command and control, delimitation of protected 
areas and programs aimed at families in extreme poverty (Mello & Artaxo 2017, Assunção 
et al. 2015, Assunção et al. 2023). Private policies such as the soybean moratorium also 
contributed to decreasing deforestation rates (Heilmayr et al. 2020). 

In the current Brazilian policy discourse, different mechanisms to decrease deforestation 
rates are being discussed and implemented, accompanied by discussion on how to finance 
them. Forward-looking deforestation risk models provide an approach to identify drivers and 
dynamics, and areas that are more likely to be affected, enabling more informed decisions 
depending on prevailing economic pressures on natural forests (Rosa et al. 2017). Spatially 
explicit models can help identify risk areas for targeted policy responses. A deforestation 
warning system that jointly provides information on future deforestation pressures and 
where they are likely to manifest can improve the capacity of planning and performance of 
mechanisms to reduce deforestation.

2. Methods

We create a spatially explicit deforestation baseline and a policy scenario of increased 
protection in the Amazon forested areas. We first estimate a deforestation baseline that 
accounts for macroeconomic conditions (see Section 2.1.1, BAU) and, as an alternative, 
that uses a constant historical reference (see Section 2.1.2, HRL). We then allocate the 
total expected deforestation spatially (see Section 2.2) and simulate a policy scenario 
of increased governance in the Amazon by artifically altering the spatial allocation to 
represent increased forest protection in specific public land categories (see Section 2.3, 
GOV). The framework is divided into two main parts as illustrated in Figure 1: (i) model-
based projections for the total expected amount of deforested area in the future, and (ii) 
the spatial allocation of deforestation.
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2.1 Quantification of deforestation
To quantify deforestation, we define the macroeconomic “business-as-usual” (BAU) 
baseline as the expected amount of deforestation based on the past relationship between 
deforestation and macroeconomic conditions, anchored in a macroeconomic projection. 
Details are available in Wang et al. 2023. Because of its widespread use, we also calculate 
the total amount of deforestation that would be projected based purely on historical 
deforestation trends (HRL), without using information from any variables other than past 
deforestation.

2.1.1 Business-as-usual (BAU) baseline1

The BAU baseline level of deforestation should represent the amount of deforestation we 
would expect to take place given exogenous, or at least predetermined, macroeconomic 
conditions. The BAU baseline should provide an estimate of deforestation not affected 
by policy efforts, so that it can serve as a counterfactual for scenario analysis and its 
residuals (observed deforestation minus baseline deforestation) can be interpreted as 
a result of policy actions. We know that policy efforts and interventions, such as the 

1 This subsection is adapted from Wang et al., 2023. Please refer to it for additional discussions, theoretical background 

and intermediate results.

Figure 1. Modeling approach flowchart. On the left side, macroeconomic conditions determine 
the expected amount of deforestation. On the right side the spatial distribution of infrastructure, 
land use, land domain (tenure conditions), and biophysical conditions determine where it is more 
likely to observe deforestation. Both approaches together are used to create spatially explicit 
scenarios of expected yearly deforestation.
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Amazon Soy moratorium or the updating of the forest code, have had significant impacts 
on the rate of deforestation. The key challenge is then to adequately account for past 
policy actions in the model fitting period, so as not to attribute the results of policy actions 
to macroeconomic conditions. We will first describe a full model that includes the policy 
process to develop the idea and clarify where we need to make simplifying assumptions 
to operationalize our model empirically.

Full model including policy. We denote with  total deforestation in year t in the study 
area (here, the nine Brazilian states comprising the Legal Amazon, including Acre, Amapá, 
Amazonas, Mato Grosso, Pará, Rondônia, Roraima, Tocantins, and parts of Maranhão). The 
full model treats total deforestation as a function of deforestation outcomes for the past 
three years, yt-p , a set of K exogenous macroeconomic variables with up to 3 lags, , as 
well as variables capturing past policy actions. Policies related to deforestation can occur 
either independently of macroeconomic conditions, πd or be functions of macroeconomic 
conditions, πm (x). We call the former independent policies and the latter macro-induced 
policies. The full model (1) below incorporates both processes additively.2

(1)

where: 
yt = Observed deforestation in year t
c = Constante
𝑦𝑦!"# = Lagged deforestation outcome in year t-p (with a maximum of P=3 lags)
𝑥𝑥!"#$ = Exogenous macroeconomic variables in year t and as lags in year t-q (with 
a maximum of Q=3 lags). Exogenous macroeconomic variables used are principal 
components of commodity prices and the real exchange rate.
πm (xt ) = macro-induced policies
πd = independent policy d
vt = residual in year t

The challenge arises from the macro-induced policies as omitting those means that 
our estimates of would absorb their effects and we would attribute policy effects to 
macroeconomic factors. To consider how our results would be biased we differentiate 
between two cases where macro-induced policy changes are either positively correlated 
to macroeconomic factors or negatively correlated to macroeconomic factors. For ease 
of exposition, assume that an increase in reflects macroeconomic conditions that 
increase deforestation pressure (for example an increase in global soy prices) and that an 
increase in  reflects policy changes that increase protection policies and decrease 
deforestation (for example tightened land use regulation). Procyclical macro-induced policy 

2 Note that under the assumption that independent policies  and macroeconomic conditions  are truly independent, omitting  

them in our estimation would lead to less precise estimates but would not bias our estimates of .
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actions are those where both effects move deforestation outcomes in the same direction. 
For example, if global commodity prices decrease  and hence deforestation pressure 
eases, governments may seize the opportunity to further tighten land use regulation  

. This countercyclicality is reflected as  The result is a larger reduction 
of deforestation than predicted from macroeconomic conditions alone. Conversely, 
macro-induced policy actions could be countercyclical, i.e. move deforestation outcomes 
in opposite directions. For example, an increase in commodity prices  would increase 
deforestation pressure but may also generate additional tax revenues for the government 
that could in turn be used to fund the forest police and combat illegal deforestation 
. Here we would have . A similar situation would occur if governments tightened 
deforestation to counteract an expected increase in deforestation pressure from projected 
increases in commodity prices.

Simplified model allowing for policy-induced level-shifts:
It is difficult to assess whether procyclical or countercyclical policy predominates in our 
estimation period and a strong assumption that such a pattern would remain unchanged 
in the future. Additionally, it is difficult to find proxies for the policy process  
, which renders estimating Model equation 1 infeasible. Instead, we adopt a simplified 
model common in the literature and represent a known policy action via a policy 
dummy variable , which is one during and after the year when the relevant policy was 
introduced. This is in line with how previous literature has tried to capture policy effects 
when estimating the macroeconomic drivers of deforestation (e.g. Assunção, Gandour, 
Rocha 2015). We also restrict the number of lags for past deforestation and for the 
variables reflecting macroeconomic conditions to three. This yields our simplified model 
equation (2) below:

(2)

where:
yt = Observed deforestation in year t
c = Constant
yt-p = Lagged deforestation outcome in year t-p (with a maximum of P=3 lags)
𝑥𝑥!"#$  = VExogenous macroeconomic variables in year t and as lags in year t-q (with a 
maximum of Q=3 lags). Exogenous macroeconomic variables used are principal 
components of commodity prices and the real exchange rate.
𝑑𝑑!"# dummy for policy d in year s, active for all years t > s
et = residual in year t
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By not explicitly differentiating between   and , it is possible that our estimates 
for  (and ) suffer from omitted variable bias. An omitted procyclical deforestation 
policy would lead to an upward bias for   and hence the true deforestation baseline 
net of policy effects would be smaller than our forecast in absolute terms: . 
If we use the difference between observed deforestation and estimated counterfactual 
deforestation, , as our measure of policy impact, then an omitted procyclical 
deforestation policy would mean that we underestimate the (cyclical) effect of policy. 
The reverse argument holds for an omitted countercyclical policy.  

Given the lack of appropriate proxies and the brevity of data records, we have to rely on 
simple dummy variables, , to estimate the relationship between macroeconomic 
conditions and deforestation , that is net of any policy effects (as policy enters through 
our policy scenario). In this application, we allow for policy dummies in 2004 (Action Plan for 
the Prevention and Control of Deforestation in the Legal Amazon), 2009 (Zero Deforestation 
Cattle Agreement) and 2012 (updated Natural Vegetation Protection Law). Dummy variables 
could, in principle, be inserted to account for a reduction of policy efforts as well. In this 
model however, we only include policy dummies that represent increased policy efforts. 

Estimation and data:
Model 2 above shows the estimated equation. Observed annual deforestation is taken 
from PRODES (TerraBrasilis, 2023), from 1999 to 2021, and is our outcome variable . 
The model allows for the inclusion of up to three lags of observed deforestation.  are 
a set of exogenous variables that reflect macroeconomic conditions: the real effective 
exchange rate (REER) and principal components of global commodity prices (beef, coffee, 
soy bean, corn, sugar, soy oil, hardwood logs and iron ore) expressed in local currency. 
Table A1 in the appendix shows the first four principal components of commodity prices. 
Again, we allow for up to three lags because changes in macroeconomic conditions may 
be visible as observed deforestation only after some delay. 

The combination of these variables and their lagged variants leaves many potential 
regressors. To keep the model tractable and its insights generalizable, we use a variable 
selection method (LASSO) to choose the most relevant predictors. The selected variables 
jointly explain about 90% of the observed deforestation between 1999 and 2021 (see 
Table 1). 
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Figure 2 shows expected deforestation (blue distributions) according to the model from 
1999 until 2021 together with observed deforestation (green and red bars). The effects 
of the real effective exchange rate (REER) rising from its lowest point of 42 in 2004 
and peaking at 109 in 2011,3 are visible from the graph, as expected deforestation due 
to macroeconomic conditions decreased sharply. Note that there are still differences 
between observed and expected deforestation because our model does not account for 
all policy effects that may have managed to keep deforestation below expected levels (or 
have failed to do so).

3 Note: the REER is indexed to 100 in 2020. See BIS Effective Exchange Rate Indices.

Table 1: Post-LASSO regression results. The results were obtained from fitting a linear 
regression model on the selected variables from the LASSO model. Hence, the standard errors are 
invalid and only serve an indicative purpose due to issues surrounding post selection inference. 
Note that a variable being selected by the LASSO does not imply that the variable is also 
statistically significant.
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Figure 2. Observed deforestation from 1999 to 2021 are shown in the bars. The colors represent 
whether deforestation is lower or higher than expected according to the macroeconomic model. 
The blue distribution is the expected deforestation according to the model.

To construct a macroeconomic baseline for the total amount of deforestation in the near 
future, we use macroeconomic forecasts from the World Bank’s Macro-Fiscal Model 
(MFMod) as discussed in (Burns et al., 2019).4 Because these macroeconomic forecasts 
are only available up to three years into the future, we restrict our scenario to 2022-2025. 
The World Bank updates the three-year projections every six months and publishes them 
through the Macro Poverty Outlook series.5 We used the coefficients from equation (1) 
with forecasted values for REER and global commodity prices to project deforestation 
from 2022 to 2025. Figure 3 shows the range of possible deforestation outcomes. For 
each year, we used the average value for the next steps of our analysis.

 

4 We use the point estimates of the forecasts, thereby neglecting how uncertainty in macroeconomic forecasts would propagate 

to uncertainty in our deforestation estimates. Future research could address this by providing different scenarios, e.g. for strong 

or weak macroeconomic conditions.
5 https://www.worldbank.org/en/publication/macro-poverty-outlook
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2.1.2 Historical Reference Level (HRL)

Due to its widespread use, we include the simplest way to construct a baseline for expected 
deforestation in our analysis as a comparison: assume that deforestation continues at the 
same rate as in the most recent year(s) with available data. For example, the Amazon Fund 
or CONAREDD+ / REDD+ forest reference levels use moving averages that get updated 
every five years. In our application, we only consider the near future until 2025, so, to apply 
this method, we assume that deforestation continues in 2022-2025 as in 2021 and 2022 
(meaning 12,550 km2 according to PRODES).

2.2 Spatial allocation of deforestation

The allocation of deforestation is a result of models that use the spatial distribution of 
cleared areas probability, and processes of expansion and creation of deforestation 
patches. The model was parameterized based on landscape changes occurring between 
2017 and 2020. A list of variables is shown in Table 2 comprising environmental variables 
(both biological and physical-chemical), land domain, infrastructure, environmental 
regularization, socio-economic, and land use. The entire allocation model was implemented 
in the DINAMICA EGO platform (Soares-Filho et al., 2013, www.dinamica-ego.com).

We surveyed the literature for variables related to deforestation occurrence, culminating in 38 
variables constructed and tested for deforestation dynamics. The relevance of the variables 
was tested for the Brazilian Legal Amazon as a whole, but also for two specific regions - 
one between the states of Acre, southwestern Amazonas, and northern Rondônia (also 

Figure 3. The forecasts are formed by fitting the benchmarking model based on macroeconomic 
conditions (Equation 1) and using forecasted macroeconomic conditions to predict annual 
deforestation rates in Brazil’s Legal Amazon. The average forecast (dark green line) represents the 
BAU scenario. The forecast intervals show the likelihood of alternative outcomes. 
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known as AMACRO), and another region between southern Pará and northern Mato Grosso. 
These regions are distinct in terms of physiognomies, physical-chemical factors, agricultural 
production, and socioeconomic characteristics, and thus bring about different relationships 
between native vegetation conversion and the explanatory variables. The variables selected 
to integrate the model are those presented in Table 2. They were selected based on the 
significance of deforestation dynamic and its lower correlation with other selected variables. 

Region of 
interest

Variable type Variables

Amazon Infrastructure Distance to roads and branches (IMAZON Geo, 2023; DNIT, 2023)

Amazon Infrastructure Distance to urban areas (IBGE, 2023)

Amazon Infrastructure Distance to rural villages or settlements (IBGE, 2023)

Amazon Land use Distance to deforested areas in the last two years of the time series

Amazon Environmental Suitability for Agriculture (Pires, 2014)

Amazon Environmental Slope (SRTM, 2023)

Amazon Land domain Land tenure class (IPAM – internal material)*

AMACRO Environmental Carbon Density (MCTI, 2021)

MT/PA Environmental Terrain Altitude (SRTM, 2023)
* Rural Properties, Rural Settlements, Restricted Use Conservation Units, Sustainable Use Conservation Units, Non-Designated Public 
Forest, Indigenous Land - Homologated, Indigenous Land – Not homologated, Traditional Peoples and Communities, Other Public Lands, 
NoData

The probability of change was calculated by the Bayesian weights of evidence method 
(Bonham-Carter, 1994), using conditional probabilities to establish the relationship 
between presence/absence of change given the presence/absence of a given factor. The 
Weights of Evidence technique uses statistical relationships among the various layers of 
information (evidence) and known occurrences of deforestation (data-driven) to describe 
and analyze the interactions among the various spatial data (variables). When simulating 
scenarios of governance for which a certain area is expected to become more protected, 
the weights can be artificially modified to mimic the expected effects. 

Finally, the simulation of changes is done by integrating the transition rates (quantification 
of deforestation) with the spatial probabilities of change. The cellular automata patcher 
and expander (Dinamica EGO software) are used to operate the allocation of quantified 
changes according to the probabilities obtained. The first creates new deforestation patches 
from a seeding mechanism (Leite-Filho et al., 2020), while the second expands pre-existing 
deforestation patches.

Table 2. Selected variables used to model probability of change. The region of interest is 
spread into the whole Amazon Biome, AMACRO (states of Acre, southwestern Amazonas, and 
northern Rondônia), and PA/MT (southern Pará and northern Mato Grosso).
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The whole allocation model was applied for each municipality individually. The adherence 
of each variable presented in Table 2 was measured individually for each of them. Those 
variables that were not significant to the model for a certain municipality were excluded 
from the model applied to this same municipality. The results of the models for each 
municipality were compiled into a single result for the entire Amazon.

2.3 Governance (GOV) Scenario

Deforestation in the Amazon is related to both economic factors and governance issues. 
While the BAU baseline accounts for (macro)economic factors, we want to highlight 
the importance of governance through modelling policy scenarios. We develop an 
environmental governance scenario (GOV) showing possible deviations from the BAU 
baseline. Specifically, we model what would happen if all Non-Designated Public Forests 
(NDPFs) would be assigned to Conservation Units. We do this by altering the allocation 
model so that non-designated public forests (NDPF) receive the same deforestation 
weights of evidence as Conservation Units.

The GOV scenario influences the allocation of deforestation on the local level within each 
municipality. Whether it also decrease deforestation in the aggregate depends on the amount 
of deforestation that is displaced to neighbouring areas within the same municipality. The 
extent of leakage could be captured by a leakage elasticity. In this paper, we provide a range 
of possible scenario outcomes based on two extreme values for the leakage elasticity. First, 
a leakage elasticity of 1 assumes that all avoided deforestation in NDPFs is displaced within 
the municipality and total aggregate deforestation remains the same. We denote this variant 
of the governance scenario as GOVlq (lq=leakage). Second, a leakage elasticity of 0 assumes 
that no deforestation is displaced to other areas and the amount of deforestation in grid cells 
that are not NDPFs remains constant. This means that total aggregate deforestation will 
decrease proportional to the decrease in NDPFs. We denote this variant of the governance 
scenario as GOVdr (dr=decrease). Clearly, both extreme variants of the scenario are not 
realistic, but they illustrate the range of results from the implementation of a territorial public 
policy. Note that deforestation in NDPFs is not assumed to be zero in either variant of the 
scenario. Instead, other variables in NDPFs may be different from protected areas (e.g. 
distance to roads, settlements or previous deforestation) and exert sufficient deforestation 
pressure such that the model still simulates that some deforestation would occur in NDFPs, 
even after assigning them the same protection as conservation units. In such cases, the 
patcher and expander algorithms that allocate deforestation spatially are unable to allocate 
the amount of deforestation only outside of NDPFs, because expected deforestation rates 
are high and available forest patches are either not abundant enough or present even greater 
resistance to deforestation. Additionally, there has been some deforestation in protected 
areas historically, so the base deforestation probability for conservation units is also not 0.
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2.4 Model Validation

We validated the model by comparing results from the macroeconomic BAU baseline 
(BAU) to the 2022 observed data using four metrics: (i) the amount of predicted and 
observed deforestation, (ii) the spatial similarity between observed and simulated maps 
according to different window sizes (fuzzy similarity method), (iii) the spatial agreement 
between observed and simulated maps in a 12km x 12km and 20 km x 20 km grid, and 
(iv) the analyzed agreement between observed and simulateds deforestation values on a 
municipality level.

We compared the amount of deforestation predicted by the BAU baseline and the amount 
of deforestation detected by PRODES in 2022 (TerraBrasilis, 2023). To obtain the overall 
mean spatial accuracy of simulated maps we have calculated spatial similarity between 
observed and simulated maps according to different window sizes, known as Fuzzy similarity 
method (Soares-Filho et al., 2013). This method accounts for commission and omission 
errors with window increasing from 1 cell (0.5 km spatial resolution) to 41 cells (20.5 km 
spatial resolution) (Silvestrini et al., 2011). Then, seeking to understand model accuracy on 
a local scale, we mapped spatial agreement in a 12 km x 12 km grid and a 20 km x 20 km 
grid by comparing deforestation detected by PRODES in 2022 and simulated deforestation. 

 At a municipal level, we compared deforestation detected by PRODES in 2022 and simulated 
deforestation using both absolute values and proportional ones. The proportional values 
suggest the model’s ability to capture deforestation dynamics even if the absolute amount 
of simulated deforestation is not the same. Finally, we compared the list of municipalities 
that were most deforested in simulated and observed maps.

3. Results and Discussion

3. 1 Prediction Accuracy of BAU Baseline

For 2022, our BAU baseline predicted a reduction in deforestation compared to the 2021 
level, which we indeed observe in the data. However, while our BAU baseline predicted a 
deforested area of 9,619 km2, true deforestation (according to PRODES 6) was 12,695 km2 in 
2022 (TerraBrasilis, 2023). This is 32% more deforestation than estimated, likely reflecting 
weakened forest governance in 2022 and the years immediately before. Literature has 
pointed out that, indeed, Brazilian environmental policies have been weakened since 2016, 
effecting already protected areas and mainly Non-Designated Public Areas (Azevedo-
Ramos et al., 2020; Carvalho et al., 2022; Coelho-Junior et al., 2022; Silva Junior et al., 
2023). 

6 http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/legal_amazon/rates
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Overall mean spatial (fuzzy) similarity corresponded to 80% in a 12 x 12 km window 
size, and almost 90% in a 20 x 20 km, representing a good match between observed and 
simulated deforestation (see Appendix, Figure A2). Such pattern is also shown in Figure 4 
with a significant portion of the map showing agreement between observed and simulated 
deforestation. 

Figure 4. Spatial agreement in a 20 km x 20 km grid by comparing simulated (Macroeconomic 
BAU baseline) and observed (PRODES) deforestation in 2022

Local differences between observed and simulated deforestation are concentrated in the 
central area of the State of Amazonas (AM), in the northwest of the state of Roraima (RR), 
and in the southwest of the state of Pará (PA). We attribute this difference to two new 
dynamics which were likely not captured by our models due to the lag period between 
model calibration and scenario building. First, in the last two years, the forests in the 
interior of the State of Amazonas - the largest block of dense forest in the Amazon region 
- have experienced a significant increase in deforestation rates. These forests used to 
have negligible deforestation before 2020 but are quickly becoming a new deforestation 
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frontier. Second, a new pattern of increasing deforestation emerged in protected areas 
and non-designated public forests (NDPF) in the states of Roraima and Pará (Alencar et 
al. 2022). Additionally, the increase in magnitude of deforestation in public areas is also a 
more recent dynamic (Alencar et al. 2022). 

The 30 municipalities accounting for most deforestation summed up 61% of the total 
area deforested in the Brazilian Legal Amazon according to the observed deforestation 
by PRODES in 2022 (TerraBrasilis, 2023). Considering the absolute value of deforestation, 
these municipalities are mainly in the states of Amazonas (Apuí, Lábrea), Pará (Altamira, 
São Felix do Xingu) and Rondônia (Porto Velho). Most deforestation was also predicted 
in these 30 municipalities in the BAU scenario, including the top five municipalities 
in Amazonas, Pará and Rondônia. Additionally, 25 out these 30 municipalities are also 
presented in the group of most deforested municipalities in the baseline BAU and the 
GOV scenario. Still, difference between observed and simulated deforestation in the BAU 
baseline were higher than 50% in 13 municipalities – mainly in the states of Amazonas 
(Apuí, Lábrea, Manicoré, Nova Aripuanã), Pará (Itaituba, Portel) and Mato Grosso (Colniza, 
Nova Bandeirante).

3.2 Comparisons between BAU baseline and GOV scenario

The 2022 estimates highlight the strength of the macroeconomic BAU baseline relative to 
extrapolating historical values (the historical reference level, or HRL). The BAU accounts 
for the expected reduction in deforestation due to macroeconomic conditions that 
disincentivized deforestation and shows that, even though the amount of deforestation in 
2022 (11,594 km2) was lower than in 2021 (13,038km2), weakened forest governance may 
have nevertheless led to higher-than-expected deforestation.

With a constant rate assumption, we would predict particularly poor deforestation outcomes 
from 2022 to 2025, accumulating almost 50,000 km2. In comparison, the macroeconomic 
BAU baseline would accumulate 37,000 km2 of deforested area by 2025 – 26% less than 
the historical reference level (Figure 5). Turning to the governance scenario, the expected 
accumulated deforestation between 2022-2025 ranges between 31,728 km2 and 37,000 
km2, depending on whether we assume no or full leakage.
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The spatial distribution of simulated deforestation from 2022-2025 for all three models 
are shown in Figure 6. In general, the highest deforestation values (> 75 km2 in a 400 
km2 cell) are more concentrated in central Pará (PA) and in southern Amazonas (AM), 
especially along the main roads. Lower values (< 25 km2) were observed widespread along 
the border between Brazilian Amazon and Cerrado Biomes, region often called the Arc of 
Deforestation. This region is the oldest deforestation frontier in the Brazilian Amazon with 
highly fragmented forest. Thus, all the models simulated deforestation in small patches 
over the entire region.

Figure 5. Deforestation accumulated from 2022 to 2025: Historical reference level (HRL), 
Macroeconomic Business as usual (BAU) and Governance with full leakage (GOVlq) and without 
leakage (GOVdr). There is no difference between BAU and GOVlq as they only differ in the 
allocation aspect.
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Figure 6. Simulated deforestation from 2022-2025 in grids of 20 x 20 km (400 km2 cell) for each 
model: A) Constant rate assumption; B) Macroeconomics BAU baseline; C) Governance scenario 
(GOVlq).

B – GOV       

A - HRL B - BAU

In line with the larger accumulation of total deforestation, the constant rate projection also shows 
more grids with more than 75 km2 of deforestation than the BAU baseline and GOV scenario. The 
differences between BAU and GOV can only be seen at local levels, especially along the BR-163 
(south Pará) and BR-364 (south of Amazonas (AM), near Acre (AC) and Rondônia (RO) states). 
These are regions in which a significant amount of deforestation has occurred in non-designated 
public forests (NDPFs). Figure 7 shows an example of how the model simulates deforestation 
in all three different scenarios regarding NDPFs at a fine scale along BR 163, South Pará. With 
historical reference levels and the BAU baseline, NDPFs are deforested according to historical 
patterns, resulting in a deforested area of around 995 km2 between 2022-2025 in the highlighted 
region (Figures 7A and 7C). In the scenario in which NDPFs are converted into protected lands, 
deforestation decreases to 553 km2 in those areas (Figure 7B).
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Among public lands, the non-designated public forests (NDPF) were the most deforested 
in the constant rate projections and the BAU baseline, representing around 25% of total 
deforestation in the period. Such a pattern has been reported in the literature for the last 
years (Azevedo-Ramos et al., 2020, Alencar et al. 2022). The GOV scenario projects almost 
57% less deforestation in NDPFs than the BAU baseline, when these areas are set to 
behave similarly to protected areas. 
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Figure 7. Deforestation in NDPF (non-designated public forests) in a zoom area in the southeast 
of Pará state among the models: A) Macroeconomic BAU baseline; B) Governance scenario;  
C) Historical Reference Level; D) location of the zoom area.



April 2024

20

BRIEF
POLICY

REALIZATION SUPPORT

It is instructive to analyze which areas outside of NDPFs would see increased levels of 
deforestation when we make the (extreme) assumption that there is full leakage. This 
can help us understand unwanted side-effects of increased local protection and reveal 
where future deforestation patterns are likely to manifest. Full leakage means that total 
deforestation in the BAU baseline and the GOVlq scenario are the same, deforestation 
increases in other land tenure categories to offset the decrease in NDPFs. The classes 
with the largest increases in deforestation are rural settlements (42%), rural properties 
(21%), conservation units (14%), environmental protected areas (12%). Figure 8 shows 
the leakage distribution among these classes. Leakage into protected areas such as 
conservation units were observed in municipalities with already high deforestation 
pressure when those municipalities had NDPFs becoming more protected. Nevertheless, 
rural settlements and rural properties concentrated most of deforestation in all scenarios 
followed by NDPFs. 

Figure 8. Leakage effect when increasing protection in non-designated public forests (NDPF) 
onto other land tenure classes. Numbers represent the area that would be deforested in this 
scenario for each land tenure class (km²).

4. Conclusion and Applications

Deforestation is a result of many interrelated factors, including socio-economic drivers, 
land-use policies, infrastructure development, and global market demands. Modelling 
the risk of deforestation enables us to better understand how different factors affect the 
spatial-temporal dynamics of this process. Predicting the quantity and where deforestation 
is more likely to occur in space is essential to build and implement effective mechanisms 
to avoid deforestation. 

This study shows two important factors interfering in deforestation: macroeconomic 
cycles and governance in the form of designating public forests to protected areas. 
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Macroeconomic cycles can influence land-use decisions, resource allocation, and even 
the regulatory environment, impacting the overall risk of deforestation. Nevertheless, 
simulating scenarios in which public forest would be designated for protected areas 
shows how deforestation is reallocated compared to scenarios in which public forest 
remain undesignated. Such pattern of displacement, often called leakage, is expected 
when the overall drivers of deforestation are not addressed in tandem. 

Future research could build on our initial results on deforestation leakage to better 
understand how microeconomic factors influence where leaked deforestation is most likely 
to occur. Here, Figure 8 provides a starting point to observe which land tenure categories 
absorb most of the (simulated) leakage. A better understanding of leakage effects would 
also help to inform policy discussions on how to best address and prevent deforestation 
from leaking from newly protected forests to neighboring areas. Additionally, estimating a 
leakage elasticity that depends on local microeconomic factors (e.g. road access and land 
tenure categories of neighbouring areas) and general equilibrium effects (e.g. reduced 
land supply and associated increases in deforestation pressures) could significantly 
narrow down the range of likely outcomes for any given policy scenario and improve upon 
our method of using two extreme assumptions of full or no leakage. 

Section 2.1.1 shows, by means of a theoretical model, how policy intervention and 
macroeconomic conditions can be related. We operationalize this model for our analysis 
by including policy dummies, as is standard in the literature. However, we recognize the 
limitation of this approach in accounting for unobserved correlation in the timing and 
stringency of policy intervention with macroeconomic conditions and discuss possible 
biases at the end of Section 2.1.1. Future research could improve on our approach by 
identifying robust proxies for the policy process that contain more information than 
dummy variables.

Mechanisms to avoid deforestation approaching multiple parts of the intricated dynamics 
of deforestation are key to reduce ecosystem degradation and biodiversity loss. Different 
instruments to finance such mechanisms have been implemented such as certification 
and market-based initiatives, Payment for Ecosystem Services (PES), Reducing Emissions 
from Deforestation and Forest Degradation (REDD+), public and private funds. Almost all 
instruments enabling the implementation of mechanisms on a large scale are designed 
with a result-based approach. A refined version of models such as the one presented here 
could be used to support the computation of the performances within these mechanisms. 
A dashboard  [https://forestatrisk.ipam.org.br] bringing all the results shown here is 
provided by IPAM and WB, where users can better analyze the difference between 
scenarios for specific regions through graphs and maps. 

https://forestatrisk.ipam.org.br
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Appendix

The table shows the first four principal components of global commodity prices in Brazilian 
reals between 1996-2020 (annual frequency). The data was obtained from FRED, Federal 
Reserve Bank of St. Louis. Note that the LASSO variable selection model selected the 
second and fourth principal components for the analysis.

Table A1: Principal components of global commodity prices
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The figure shows the validation results of the spatial allocation algorithm, comparing 
observed deforestation and simulated deforestation in Brazil’s Legal Amazon using 
PRODES data. The validation calculates the spatial similarity, following the Fuzzy similarity 
method (Soares-Filho et al., 2013).

 

Spatiotemporal deforestation model with leakage
The model described in equation (2) is on the country or regional level, which aims at 
modeling the effect of macroeconomic dynamics on deforestation on an aggregate 
level. In this section we describe how (2) could be reformulated to capture the effect on 
subnational entities along with spillover effects. This framework serves as a basis for 
discussion and future research.

Dynamic panel model
To simplify notation, let us extend (2) and then rewrite in vector notation, where  represents 
a vector of deforestation values with typical value , with i=1,…,N denoting the entity.7 
Moreover, without loss of generality, let us consider only one lag that is  along with only 
one policy event effect.

(3)

Here, Gt is a vector of global factors, such as the real effective exchange rate or commodity 
prices, which may have entity-specific effects, . In contrast, Lit is a vector of entity-specific, 
local variables, such as population density or share of protected areas, with entity-specific 
effects . We also assume that policies, which may be relevant to more than one entity 
and period, will have time- and entity-specific effects, it  . Model (3) expresses idea that 
7  Entities could be administrative units, such as states or municipalities, or geographical units, such as 1km x 1km cells in a 

grid. The spatial distance matrix  would be adjusted accordningly.

Figure A2:  Validation of spatial simulation with different window sizes.
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deforestation in a specific entity is both driven by global (Gt) and local (Lit) factors, and that 
the same factors may have heterogeneous effects ( ).

We can express this more compactly as a vector-valued time series model.

(4)

To further simplify notation, we define an exogenous variable component that contains 
both global and local factors, that is  . Consequently, the model (4) 
becomes

(5)

Spatial modeling for leakage
The underlying assumption in models (3)-(5) has been that entities  are isolated from each 
other. This is, however, far from reality, where neighboring regions experience spillover 
effects, or externalities in general. That is, the deforestation in region i may not only be 
driven by global and local factors, but also by spatial dependencies with a neighboring 
region j. We denote this distance between i and j as wij, which constitutes the N×N spatial 
dependency matrix W. 

(6)

The matrix W enters the model (6) through various channels. Not all channels are 
required to estimate the effect of interest. Nevertheless, we describe all components for 
the sake of generality.

• : Contemporaneous spillovers due to deforestation in neighboring regions.
• : Contemporaneous (or lagged) spillovers due to global or local factors through 
neighboring regions.
• : Contemporaneous (or lagged) spillovers due to policies in neighboring regions.
• : Spatial dependency in the error structure

The inclusion of W is not only to model channels of interest but also to control for omitted 
variables and endogeneity issues that stem from spatial proximity. Spatial diagnostic 
tests, such as Moran’s I or Lagrange Multiplier tests, should be conducted to identify which 
spatial components are most relevant. Note that the spatial autoregressive component 

 renders the model nonlinear and requires maximum likelihood estimation methods. 
Moreover, while the model is written with annual data in mind, it is possible to estimate it 
on higher frequencies. In such cases, it would be insightful to allow the spatial dependency 
parameters  to be time-varying, given that deforestation dynamics have a seasonal 
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component. Appropriate state-space models and estimation methods exist in the literature.
It is worth mentioning that the dependent variable can be deforestation rate itself or a 
probability of deforestation. This can be achieved by using a probit or logit transformation, 
which would yield results closer to the notion of “forest-at-risk”. Finally, the distance matrix  
W usually refers to geographical distances. However, deforestation leakage is not always 
a function of distance. Anecdotal evidence points towards spillovers to comparable or 
similar regions, that can serve as a substitute whenever a target region is put under 
protection. In such cases, the W matrix would capture similarities rather than distances. 


