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1 Introduction

A number of recent papers have found impressive, positive effects of the global Green
Revolution on agricultural productivity and measures of human welfare. For instance,
the roll-out of high-yielding varieties (HYVs) and modern inputs in poor countries
increased cereal yields (Evenson and Gollin, 2003; Gollin, Hansen, and Wingender,
2018; McArthur and McCord, 2017), consequently lowering cereal prices (Evenson and
Gollin, 2003). Adoption of HYVs decreased both adult and infant mortality but also
decreased fertility rates, resulting in overall smaller populations (Gollin, Hansen, and
Wingender, 2018; von der Goltz et al., 2020). Furthermore, on a global scale HY Vs and
increased fertilizer application appear to have reduced labor share to agriculture,
increased per capita Gross Domestic Product, and — after a decade’s lag — increased
labor productivity in the non-agricultural sector (Gollin, Hansen, and Wingender, 2018;
McArthur and McCord, 2017).

Yet these papers pay little heed to the distributional effects of the Green Revolution. In
India particularly this seems like a yawning gap of inquiry, given that a great number of
economists writing during the Indian Green Revolution itself expressed concern about
its implications for rural inequality. For instance, many were concerned that small and
“marginal” farmers were failing to adopt HY'Vs at the rate that larger farmers were,
were less successful at growing HY Vs, and/or were forced to take out unacceptable
quantities of credit to finance HY'V adoption (Dasgupta, 1977; Bhalla and Chadha,
1982a,b; Dhanagare, 1987). Others wrote that due to increasing land productivity and
land prices, landlords were attempting to convert tenants and sharecroppers to hired,
landless laborers — eroding the feasibility of ongoing, state-level land reform (Cleaver,
1972; Ladejinsky, 1969). Meanwhile, limited evidence from small datasets suggested
that despite HY Vs requiring additional labor, real agricultural wages may have
stagnated in the 1960s and 1970s (perhaps due to increased labor supply or to spurred
mechanization), making landless laborers worse off than ever (Bardhan, 1970; Cleaver,
1972; Dasgupta, 1977; Dhanagare, 1987). A number of Indian economists ultimately
suggested that HY Vs drove increased skewness in the distribution of agricultural land,

farming assets, or even income itself in rural India (Dasgupta, 1977; Junakar, 1975;
Bardhan, 1970; Dhanagare, 1987; Bhalla and Chadha, 1982b).

We provide the first empirical investigation of the distributional consequences of the
Green Revolution, working in the context of India, the poster child for the revolution.
We use district-level, household-level, and individual-level data stretching from the
1960s-2000, and quasi-experimental variation in the within-state roll-out of HY Vs to
provide causal identification (Bharadwaj et al., 2020). We find that HY'V roll-out
increased land inequality by increasing acreage to marginal and larger farmers, and
decreasing acreage to medium-sized farmers. HY'V roll-out also increased inequality in
rural income per capita and in female educational attainment. In ongoing work, we
examine the mechanisms behind these distributive impacts.

Very few studies explicitly examine the impact of improved agricultural productivity on
rural inequality, despite the accepted importance of both agricultural productivity and
inequality for economic growth (e.g., Gollin, Parente, and Rogerson (2002), Alesina and
Rodrik (1994)). However, it is well known that in smallholder contexts, new agricultural
technologies often differentially benefit the richest or largest farmers (Goldstein and



Udry, 2008; Foster and Rosenzweig, 2010; Hef3, Jaimovich, and Schiindeln, 2021), with
obvious implications for inequality among the landed. New agricultural technologies
may also impact agricultural wages — driving them down if labor-savings, up if
labor-demanding — with direct implications for agricultural laborers and inequality and
further impacts on local non-agricultural sector growth (Bustos, Caprettini, and
Ponticelli, 2016; Foster and Rosenzweig, 2004). Increased agricultural productivity may
also influence decisions around extended family structure and land division practices
(Foster and Rosenzweig, 2002; Bardhan et al., 2014), again with implications for rural
inequality.

A few papers hint at distributive impacts of the Indian Green Revolution in particular,
though again without directly exploring them. Bardhan and Mookherjee (2011) find
that government-subsidized HYV seeds and input kits were equally profitable for small
and large farmers during the 1980s and 1990s in West Bengal!, while using a nationally
representative dataset from 1968-1971, Foster and Rosenzweig (1996) find that only
educated Indian farmers with large farms profited from HYVs. In a working paper,
D’Agostino (2017) finds that HY'V wheat roll-out predicted increased male wages but
decreased female wages. Bharadwaj et al. (2020) finds that HY Vs reduced child
mortality most for rural mothers, poor mothers, and mothers from marginalized castes,
implying a mitigating effect on rural health inequality. And of course, a number of
papers written during the Green Revolution in India directly speculate about the
distributive impacts of these new crops, but without the data necessary to robustly
address the question.

We therefore provide three contributions. We contribute to the literature on agricultural
productivity and economic development by examining the effect of increased
agricultural productivity on rural inequality — a mediator of growth and structural
change — in India. We also contribute to the economics literature on the impacts of the
Green Revolution (Evenson and Gollin, 2003; Gollin, Hansen, and Wingender, 2018),
being the first paper that we know of to directly examine distributive impacts and the
mechanisms behind those impacts. The mechanisms we examine include both
demographic and labor market channels. Finally, we contribute context to literature on
redistributive land policies (Besley and Burgess, 2000), as increased agricultural
productivity during the Green Revolution seems to have increased incentive to
aggregate land and therefore to use inheritance practices to thwart the land reform
policies being rolled out by Indian states in the 1960s and ‘70s. Our results are not,
however, driven by correlation between HYV roll-out and land reform, since land reform
was legislated and enacted by states (Besley and Burgess, 2000), and our econometric
specifications leverage district-level variation, holding state-year fixed effects constant.

Our findings are also relevant for sub-Saharan Africa as governments, research institutes
and foundations attempt to bring a “Green Revolution 2.0” to sub-Saharan Africa
(Blaustein, 2008; Diao, Headey, and Johnson, 2008; Dawson, Martin, and Sikor, 2016;
Gassner et al., 2019). In 2006, the Bill and Melinda Gates Foundation joined the
Rockefeller Foundation to create the Alliance for a Green Revolution in Africa (AGRA).
AGRA hopes to “catalyze an inclusive agricultural transformation in Africa” through

!They also find that the kits increased demand for agricultural workers and had no impact on worker
wages.



improving crop varieties, improving agronomic conditions (e.g., soil fertility, irrigation),
and improving farmer access to markets, to name a few strategic focuses (Blaustein,
2008). In remarks at the 2007 World Economic Forum, former UN Secretary General
Kofi Annan noted, “AGRA is answering the call of many African leaders to build on the
achievements and lessons learned from the Green Revolution in Asia and Latin America
that began more than a generation ago. That campaign — initiated by the Rockefeller
Foundation — saved hundreds of millions of lives and more than doubled cereal
production.” We hope that by further probing the distributional impacts of the Green
Revolution in India, we may provide insights useful for new agricultural policy in Africa
as well as in Asia.

2 Data

We use district-level data on agricultural conditions from the district-level Village
Dynamics in South Asia (VDSA) panel collected by the International Crops Research
Institute for the Semi-Arid Tropics (ICRISAT). The VDSA panel covers 311 districts
across nineteen states of India over the period 1966 to 2011, tracking the 1966 districts
even after they’'ve divided by apportioning data from subsequently-created districts
back to their 1966 “parent districts”. The VDSA holds information on cropping
patterns, input use, area under high yielding varieties, irrigated area, etc. It also holds
the number of marginal (< lha), small (1-2 ha), semi-medium (2-4 ha), medium (4-10
ha) and large (>10 ha) farms in each district and year, and the land area devoted to
each of those farm categories. It is important that the VDSA begins in 1966, the year
that HY Vs were introduced to India. For a few robustness checks we may also use the
district-level Indian Agriculture and Climate Dataset (IACD) panel, which is similar to
the VDSA dataset but begins in 1956. The IACD data were collected by India’s
Ministry of Agriculture in partnership with the World Bank, and covers 271 districts
across thirteen states of India.

During the period that we examine, 1966-2000, the area under high-yielding crop
varieties grew dramatically (Figure 1). This was particularly true in districts with
better access to groundwater. However, the quality of VDSA data on high-yielding
variety coverage also degrades in many districts after 1989 (Figure 1), making it difficult
to examine the impacts of, or even associations with, HY Vs in this final decade of the
Green Revolution. When working with VDSA data in this final decade we therefore
employ multiple robustness checks, e.g. limiting analysis to districts that seem to have
trustable data, using aquifer-predicted trends in HY Vs, or aggregating farm-level
acreage to proxy for district-level coverage. During the same time period number of
marginal and small farmers in India grew dramatically, while the number of
medium-sized and large farmers shrank. The proportion of agricultural land under each
farmer category moved accordingly (Figure 2)



Figure 1: Area to High-Yielding Varieties by Crop and by Aquifer Depth
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Each point represents total area recorded under high-yielding varieties within the given category. The
drops in apparent coverage post-1989 are primarily driven by missing (district-level) data. Some districts
also record reduced coverage in the 1990s, likely reflecting flagging adherence to comprehensive recording.

Figure 2: Change in Farm Area Distribution Over Time
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Marginal farms have < 1 ha of land, small farms have 1-4 ha,
medium farms have 4-10 ha, and large farms have > 10 ha.

We use the household-level ARIS-REDS data to examine individual farmer choices,
profits, inputs and assets, etc. The first wave of the Additional Rural Incomes Survey
(ARIS) data was collected by the National Council for Applied Economic Research in
1971. It includes 4527 households residing in 17 major states and 100 districts of the
country. Sampling was conducted such that the dataset was representative of the entire
rural population of India, with an oversampling of wealthier households. In the 1981
Rural Economic and Demographic (REDS) surveys, 4979 households were surveyed,
approximately two-thirds of which were the same as ARIS households in 1971. In 1999,
all the surviving households of 1981 survey were surveyed again, including all split-off
households residing in the same village and some additional households, totaling 7474
households. Using data on the original 1971 households only, we construct a 1971-1999
panel, the only household-level panel dataset in India that spans the Green Revolution
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and focuses on agriculture. We also use the newly- sampled households in 1982 and
1999 to create a pooled cross-sectional dataset. We can also examine intergenerational
land transfers using the split-off households interviewed in 1999. Like the 2009-14 data
used by Foster and Rosenzweig (2022), the ARIS-REDS datasets over-sample high- and
middle-income farmers, and therefore farmers with medium-sized and large farms. This
allows us to examine change in productivity patterns over land size over time, and to
ask whether high-yielding variety adoption drove those changes.

Finally, we pool individual-level maternal height data from two rounds of the National
Family Health Survey (NFHS) conducted in 1998-1999 and 2015-2016. The NFHS are
nationally representative household surveys that are primarily canvassed on a sample of
females, aged between 15 to 49 years. These surveys collect detailed information on
fertility, mortality, nutrition, health behavior and various household characteristics. The
sample sizes in the two NFHS are different, but we pool them in order to get cohort
years for both the pre- and post-green revolution period.? The final dataset includes
information on mothers born between 1950 and 2000.

Using the NFHS, we will examine the effect of HY'V roll-out on maternal height and
stunting, and on the distribution of maternal height. While weight outcomes (such as
BMI) reflect short-term health and nutritional status, adult height reflects cumulative
net health, nutrition, and deprivation (Perkins et al., 2008). Height is therefore a
measure of adult health stock. Maternal height is particularly important in India, as it
is associated with child mortality, morbidity, and stunting (Subramanian et al., 2009).

3 Identifying Distributional Outcomes

High yielding varieties did not roll out randomly across India. For instance, HYVs were
introduced first in Punjab and Haryana, where irrigation and mechanization were
relatively widespread, farmers were relatively prosperous with larger land sizes, and due
to recent land reform, farms were often being worked by their owners rather than by
tenants (Dasgupta, 1977). As time went on, HY Vs rolled out in less prosperous states,
with less prevalent irrigation, mechanization, or even electrification.

So to examine the causal effect of HY Vs in India, we must identify a form of plausible
exogenous variation in roll-out. Following Bharadwaj et al. (2020), we assert that
despite non-randomness in HY'V roll-out across states, district-level variation in HY'V
prevalence within a state time period is plausible exogenous. That is, a district may be
just ahead of its state’s HY'V trajectory during one period, or just behind it in another,
for no particular reason — or for reasons that are unrelated to the outcomes of interest.

We examine this claim empirically in Table A1. Conditional on district and state-year
fixed effects, concurrent and recent rainfall and temperature shocks do predict HYV
prevalence: in most time periods, HY Vs tend to be slightly more prevalent in districts
that had a wetter or a cooler year. Yet socioeconomic characteristics such as population

2We will control for differences in sample sizes and sampling procedure across the two NFHS by adding
a survey dummy in all specifications, and also by running robustness checks with only the later, larger
sample. We will also demonstrate the robustness of our results to differences in sampling procedures
by estimating equation with and without NFHS sampling weights.



density, urbanization, literacy rates, or gender ratios in literacy do not predict HYV
prevalence during any short time period (Columns 1-3) or during the entire period of
1966 to 2000 (Column 4).

To examine the plausibly causal impact of HY'V roll-out in India, therefore, we model
district-level outcomes Yy on the lagged proportion of gross cultivated area under
HYVs in district d, HY Vi _, alongside district fixed effects d4, state-year fixed effects
0st, and district-level lagged rainfall and temperature shocks, X4 _x, since these shocks
are correlated with HY'V prevalence (Table Al). We generally lag HY'V prevalence by 1
year (k = 1), but when appropriate to the outcome we show robustness to greater lags.?

Yar = ¢o + Q1 HY Vi g + ¢2 Xap g + 0a + Ot + €ar (1)

We first use Equation 1 to examine the impact of HY'V roll-out on district-level farm
land distribution, by setting Yz to the percent of farm land in district d in year ¢ held
by marginal, small, medium-sized, and large farms, respectively. This can be done using
the VDSA data (where these district-level figures are viewed directly), or the
ARIS-REDS data (where we can calculate the percent of surveyed farmland held by
marginal, small, medium-sized, and large farms in each survey wave in each district,
and also view the percent of rural households who are landless).

As a robustness check on these distributional findings, we follow Sekhri and Shastry
(2019) to examine how landholding patterns changed differentially over time in
water-rich vs. water-scarce districts, since water availability was a primary predictor of
HYV take-up (Figure 1). We do this by estimating Equation 2 in the VDSA data,
where each ¢! provides a year-specific change in the marginal effect of having thicker
aquifers (Ay = 1),* vis-a-vis the (unidentified) marginal effect in 1970.

Vi = Co+ (i Aq x t 4+ X1 + 04 + 6 + vay (2)

Ideally we would view land distribution prior to the start of the Green Revolution in
1968, to check for parallel pre-trends. However, we do not have land distribution data
prior to 1970, and therefore view Equation 2 as a robustness check rather than an
independent identification strategy. If HYV roll-out increases rural land inequality, we
would expect the marginal effect of district aquifer thickness to be increasing for
marginal and/or large farmers (i.e., ! growing more positive over time) and decreasing
for medium-sized farmers (i.e., ¢! becoming more negative over time).

Because Rao, Eberhard, and Bharadwaj (2022) find that current-day rural land
inequality in India is higher closer to towns, we re-estimate Equation 1 in sub-samples
of the ARIS-REDS data according to 1971 distance to town, and 1971 distance to bus
station (i.e., accessibility to towns). (This is not possible in the district-level VDSA
data.) If HY'Vs primarily drive rural land inequality in villages with access to town, this
could suggest a role for sectoral transition — e.g., medium-sized farms near to towns
chose to sell land and turn to non-agricultural work after HY'V roll-out increased land
prices, in line with hypotheses by Rao, Eberhard, and Bharadwaj (2022).

3When k = 1, X4;_, holds rainfall and temperature shocks lagged 1 year, 2 years and 3 years. Relative
to HY Vg4, this is concurrent rainfall and temperature shocks plus two lags, as held in Table Al.
4Specifically, having aquifers > 100 meters, according to the Indian Agriculture and Climate Dataset.



Next, we use Equation 1 to examine the impact of HYV roll-out on rural welfare
distributions. We examine income distributions by setting Y, to the percent of
ARIS-REDS farmers in district d in survey year t falling in the 1st, 2nd, 3rd, or 4th
income quartile. We examine human capital distributions by setting Yy to the percent
of NFHS women in any given district falling in the 1st, 2nd, 3rd, or 4th height quartile,
or the the 1st, 2nd, 3rd, or 4th education quartile.

When examining human capital distributions, we are interested in the effect of HYV
prevalence in the year of a woman’s birth. That is, we define ¢ not as the year of survey,
but as the year of birth. Adult height is a widely accepted proxy for early childhood
health (Bevis and Villa, 2022). Adult education levels are shaped by early childhood
health and early parental inputs, the latter often being shaped by perceptions of the
long-term value of education and/or by the need for child labor (Foster and Rosenzweig,
1996, 2001). So, HY'V prevalence in the year of birth might impact these two forms of
human capital accumulation by shaping parental income and health/education inputs,
by changing food availability patterns and early childhood nutrition, by influencing
parent perceptions of the value of education or the family’s need for agricultural labor,
or through other pathways. We remain agnostic as to the particular pathway of impact.

4 Distributional Results

4.1 Farmland

Table 1 displays the impact of HYV roll-out on rural land distribution — that is, the
results of estimating Equation 1 in the VDSA data, with Y measuring the share of
gross agricultural land in district d and year ¢ held by marginal, small, medium-sized,
and large farmers in turn. As HY Vs roll-out within a state, the center of the land
distribution hollows out (columns 2, 3) and the proportion of land held by the largest
and the smallest farmers increases (columns 1, 4). More specifically, a 10 percentage
point increase in the acreage of agricultural land allocated to HY'V crops increases the
acreage of agricultural land held by marginal (< 1 ha) farms and large (> 10 ha) farms
by about half a percentage point each, and decreases acreage held by small (1-4 ha) and
medium-sized (4-10 ha) farms by roughly that same amount.

This “hollowing out” effect is likely to be fairly constant across time. We do observe a
stronger effect in the 1970-1980 sample alone, and a weaker effect when re-estimating in
the 1985-2000 sample (Table A2). However, HYV roll-out retains much less variation
after period-specific district fixed effects in 1985-2000, and so lack of identifying
variation may be driving those weaker results.” When Equation 1 is re-estimated using
data from 1970-1986, 1970-1990, and 1970-1995 (Table A3), we find that results vary
little from that seen for 1970-1980 or for the entire 1970-2000 sample. This is likely
because when extending the sample rather than splitting it, fixed effects still provide a
longer-period mean, and thus adequate identifying variation in HY'V roll-out remains.

5Sixty-two percent of lagged HYV roll-out is explained by district fixed effects in the 1970-1980 sample,
while 81% is in the 1985-2000 sample.



Table 1: Farmland Distribution (VDSA)

% Area to % Area to % Area to % Area to
Marginal Farms Small Farms Medium Farms Large Farms
HYV_-1 0.0524*** -0.0637*** -0.0514*** 0.0626***
(0.0103) (0.0235) (0.0163) (0.0212)
District FE Yes Yes Yes Yes
State-Year FE Yes Yes Yes Yes
Observations 1549 1549 1549 1549
Within R2 0.0335 0.0271 0.0347 0.0358

Outcomes: Proportion operational land-holdings held by each farmer category. Treatment:
Proportion gross cultivated area under HYVs, lagged one year. Sample: VDSA districts 1966-
2000. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered
standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

The effects seen in Table 1 are more generally robust. Results are similar if we examine
the roll-out of wheat HYVs and rice HY Vs alone, though rice HY'Vs have a larger and
more significant inequality impact (Tables A4, A5). The hollowing out effect exists in
districts with both thinner and thicker aquifers (Table A6). Effect sizes are virtually
identical if we examine concurrent HY'V prevalence or HY'V prevalence lagged by 5
years, rather than by 1 year (Tables A7, A8). Importantly, measurement error in HY'V
acreage in the 1990-2000 data does not drive our results; the hollowing out effect shows
up in the earlier data alone (Table A3), and dropping districts with more missing
1990-2000 data or more apparently errored 1990-2000 values intensifies the pattern
(Tables A9, A10). It therefore seems that measurement error in HY'V roll-out is biasing
these treatment effects towards zero, as it would if classical.

Table 2: Farmland Distribution (ARIS-REDS)

% Families % Area to % Area to % Area to % Area to

Landless  Marginal Farms Small Farms Medium Farms Large Farms
HYV_t-1 -0.0136 0.0277 0.194** -0.326** 0.105

(0.103) (0.0418) (0.0840) (0.134) (0.164)
District FE Yes Yes Yes Yes Yes
State-Year FE Yes Yes Yes Yes Yes
Observations 256 256 256 256 256
Within R? 0.0193 0.0826 0.101 0.0778 0.0234

Outcomes: Proportion operational land-holdings held by each farmer category, within the ARIS-REDS panel (1971

households and their splits). Treatment: Proportion gross cultivated district area under HY Vs, lagged one year.
Sample: ARIS-REDS 1971 households and their split-offs. Covariates: Rainfall and temperature shocks (lagged 1,
2, and 3 years). Bootstrapped standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

We observe a similar hollowing out effect in the ARIS-REDS dataset, though with a
reduction in medium-sized farms only. Table 2 holds the results of estimating Equation
1 using the ARIS-REDS panel of 1971 households and those who split from the panel
households. In this case, Yy reflects the percent of surveyed land being held by
marginal, small, medium-sized or large farmers. A 10 percentage point increase in
district-level acreage to HY'V crops reduces the percent of surveyed land held by
medium-sized’ farmers by 3 percentage points, and increases the percent of surveyed
land held by small farmers by 2 percentage points. We observe no significant effect on
the percent of farmland held by marginal or large farmers, though the directions of
impact are in line with the VDSA results.



As a methodological check on these distributional findings, we estimate Equation 2 in
the VDSA data to examine how landholding patterns changed differentially over time in
water-rich vs. water-scarce districts. Figure 3 holds the results: the marginal effect of
district-level aquifer thickness increases over time for marginal and large farmers, and
decreases over time for small and medium-sized farmers. This is precisely what we
would expect to find if being water-rich drove increased, district-level HY'V prevalence
over time, and if district-level HYV prevalence drove rural inequality:.

Figure 3: Temporal Change in the Marginal Effect of Aquifer Coverage
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Last, we examine whether the impact of HY Vs on rural land distribution varies with
proximity to towns or public transportation by re-estimating Equation 1 in ARIS-RED
sub-samples.® The impacts of HYV roll-out on land inequality does not vary by 1971
proximity to towns (Table A11). However, HY'V roll-out does have a stronger impact on
land inequality in the villages that were within 5 km of a bus stop in 1971 (Table A12),
with very little impact in the villages that started out with poor transportation options.

4.2 Rural welfare

Using the ARIS-REDS data, we find that the impact of HY Vs on the per capita income
distribution mirrors the impact of HY Vs on the farmland distribution (Table 3). An
increase in district-level HY'V prevalence increases the proportion of households at the
top and bottom of the income distribution, while decreasing the proportion of
households in the middle. The negative coefficient for quartile 3 is the most statistically
significant and the most robust to changes in specification (e.g., a similar farmer-level
regression finds the effect for quartile 1 insignificant but that for quartile 4 significant).

6That is, we drop sub-samples based on village-level proximity to towns or bus stops, then aggregate
the remaining observations to calculate the percent of surveyed agricultural land held by each farmer
category and the percent of surveyed households that are landless.



Table 3: Per Capita Income Distribution (ARIS-REDS)

Quartile 1  Quartile 2 Quartile 3  Quartile 4

HYV_t-1 0.261* -0.0802 -0.353*** 0.155
(0.139) (0.0970) (0.0961) (0.109)
District FE Yes Yes Yes Yes
State-Year FE Yes Yes Yes Yes
Observations 256 256 256 256
Within R? 0.0695 0.0489 0.0855 0.0661

Outcomes: District-level percent of farmers falling in the 1st, 2nd, 3rd, or 4th
per capita income quartile. Treatment: Proportion gross cultivated district area
under HY Vs, lagged one year. Sample: ARIS-REDS 1971 households and their
split-offs. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years).
District-clustered standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

Using the NFHS data, we find that HYV roll-out in the year prior to birth has an
overall positive effect on women’s height (Table 4), and thus presumably on early
childhood health during the Green Revolution. As district-level HY'V prevalence
increases, less women fall into the lower two height quartiles and more women fall into
the upper height quartiles. An individual-level regression finds that a twenty-five
percentage point increase in HY'V prevalence at birth (achieved in half of districts by
1985) increases rural women’s height by approximately 0.9 cm at the mean of the
distribution (Table A13). For context, the mean difference in height between
(better-off) Hindu and (worse-off) Muslim women in India is 0.1 cm.

Table 4: Height Distribution (NFHS)

Quartile 1  Quartile 2 Quartile 3  Quartile 4

HYV_t-1 -0.0136 -0.00718 0.00184 0.0191
(0.0187) (0.0185) (0.0174) (0.0259)
District FE Yes Yes Yes Yes
State-Year FE Yes Yes Yes Yes
Observations 13892 13892 13892 13892
Within R? 0.000656 0.000423 0.000989 0.000370

Outcomes: District-level percent of women falling in the 1st, 2nd, 3rd, or 4th height

quartile, for any given year of birth. Treatment: Proportion gross cultivated district
area under HY Vs, lagged one year before birth. Sample: 1998 and 2015 NFHS
samples. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years).
District-clustered standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

A similar, individual-level regression finds that a ten percentage point increase in HY'V
prevalence at birth increases rural women’s educational attainment by 3/4 of a year, at
the mean (Table A13). However, this improvement in educational attainment is not
uniform; HY Vs again increase the proportion of women who fall in the upper and lower
tails of the height distribution, while decreasing the proportion of women who fall in the
interior of the distribution (Table 5). Quartile 1 indicates no education, and the
positive (though insignificant) coefficient for quartile 1 indicates that as HY Vs roll out,
more women receive zero education. Even if this effect was null, the improvement in
education would be occurring only at the top of the distribution. A similar but slightly
different break-down of educational categories indicates that HY'V roll-out decreases the
proportion of women with only primary or secondary education, while increasing the
proportion of women with no education or with higher education (Table A14).
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Table 5: Education Distribution (NFHS)

Quartile 1  Quartile 2 Quartile 3 Quartile 4

HYV_t-1 0.0451 -0.0672***  -0.0461** 0.0685***
(0.0324) (0.0225) (0.0227) (0.0247)
District FE Yes Yes Yes Yes
State-Year FE Yes Yes Yes Yes
Observations 13892 13892 13892 13892
Within R? 0.00105 0.00275 0.00100 0.00317

Outcomes: District-level percent of women falling in the 1st, 2nd, 3rd, or 4th
years-of-education quartile. Treatment: Proportion gross cultivated district area
under HY Vs, lagged one year before birth. Sample: 1998 and 2015 NFHS samples.
Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-
clustered standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

5 Model and Mechanisms

In ongoing work, we are using the VDSA and the ARIS-REDS dataset to investigate
the mechanisms behind the distributional results shown in Section 4. This work
continues to use plausibly exogenous variation in the district-level roll-out of HY Vs to
achieve causal identification.

In preliminary results we find, for instance, that larger farmers are more likely to adopt
HYVs. Conditional on adoption profits appear close to scale-neutral, but smaller
farmers who adopt HY Vs see a rise in their costs per hectare (whereas larger farmers
see a decline), leading HY Vs to be riskier for smaller farmers than for larger farmers.
District-level HY'V roll-out leads to rising land prices and more land sales. It also
decreases both household and land division, likely because operation on larger land sizes
is less risky.
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Appendix A Additional Figures and Results

Table Al: Is HYV Roll-Out Within States Exogenous? Suggestive Evidence

(1) 2) 3) 1)
1966-1971  1972-1981  1982-2000 All
Rainfall this year (cv mm) 0.00555**  0.00309***  0.00396**  0.00400***
(0.00215)  (0.00116)  (0.00171)  (0.00119)
Rain last year (cv mm) 0.00463**  -0.000419 0.00151 0.00143
(0.00228)  (0.00114)  (0.00156)  (0.00106)
Rain two years ago (cv mm) 0.00597**  -0.000983  -0.000261  0.000914
(0.00241)  (0.00108)  (0.00170)  (0.00111)
Temperature this year (cv C) -0.00323  -0.00548**  0.00387 -0.00134
(0.00328)  (0.00227)  (0.00361)  (0.00250)
Temperature last year (cv C) -0.000693 0.00115 -0.00181 -0.00308
(0.00330)  (0.00212)  (0.00296)  (0.00191)
Temperature two years ago (cv C) -0.00173 0.00377*  -0.00594*  -0.00474**
(0.00274)  (0.00209)  (0.00338)  (0.00232)
Population density (log person/hectare)  0.00770 -0.00925 0.0106 -0.0354
(0.0790)  (0.0143)  (0.0401)  (0.0324)
Urban population (% of total) -0.380 -0.0500 0.0821 0.0224
(0.811) (0.184) (0.131) (0.107)
Gender ratio (male:female) 0.496* -0.105 0.557 0.0800
(0.262) (0.333) (0.424) (0.219)
Literacy rate (%) 0.246 0.0778 0.199 0.248*
(0.228) (0.104) (0.177) (0.128)
Literacy gender ratio (male:female) 0.0387 0.0250 -0.0103 -0.00672
(0.0350)  (0.0186)  (0.0168)  (0.0114)
District Fixed Effects Yes Yes Yes Yes
State-Year Fixed Effects Yes Yes Yes Yes
Weather shock Fstat 2.330 4.180 1.580 3.490
Prob > F 0.0300 0 0.150 0
Socioeconomic characteristic Fstat 1.510 0.870 0.790 1.090
Prob > F 0.190 0.500 0.560 0.370
Observations 1197 2810 4273 8295
R? 0.0323 0.0134 0.00954 0.0116

Outcome: Proportion gross cultivated area under HY Vs.
Bootstrapped standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1
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Table A2: Farm Area Distribution as HY' Vs Roll Out (VDSA Sample Split
by Time Period)

% Area to % Area to % Area to % Area to
Marginal Farms  Small Farms Medium Farms Large Farms
1970-1980 sample: HYV_t-1 0.0606*** -0.0641** -0.0905*** 0.0940***
(0.0203) (0.0250) (0.0228) (0.0284)
Observations 604 604 604 604
R?2 0.0464 0.0496 0.113 0.0947
1985-2000 sample: HY'V_t-1 0.0218** -0.0491** 0.000570 0.0267*
(0.0108) (0.0207) (0.0140) (0.0151)
Observations 867 867 867 867
R?2 0.0207 0.0425 0.0316 0.0123
District FE Yes Yes Yes Yes
State-Year FE Yes Yes Yes Yes

Outcomes: Proportion operational land-holdings held by each farmer category. Treatment: Proportion
gross cultivated area under HY Vs, lagged one year. Sample: VDSA districts 1966-2000. Covariates:
Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in
parenthesis. *** p<0.01, ** p<0.05, * p<0.1

Table A3: Farm Area Distribution as HY'Vs Roll Out (VDSA Sample over
Varying Time Periods)

% Area to % Area to % Area to % Area to
Marginal Farms  Small Farms Medium Farms Large Farms
1970-1986 sample: HYV_t-1 0.0430*** -0.0381* -0.0648*** 0.0600**
(0.0129) (0.0217) (0.0170) (0.0250)
Observations 919 919 919 919
R?2 0.0214 0.0345 0.0518 0.0677
1970-1990 sample: HYV _t-1 0.0417*** -0.0391* -0.0449*** 0.0424**
(0.0111) (0.0209) (0.0139) (0.0212)
Observations 1163 1163 1163 1163
R2 0.0254 0.0339 0.0328 0.0540
1970-1995 sample: HYV _t-1 0.0483*** -0.0658*** -0.0466*** 0.0642***
(0.0101) (0.0226) (0.0153) (0.0202)
Observations 1356 1356 1356 1356
R? 0.0326 0.0274 0.0292 0.0363
District FE Yes Yes Yes Yes
State-Year FE Yes Yes Yes Yes

Outcomes: Proportion operational land-holdings held by each farmer category. Treatment: Proportion
gross cultivated area under HY Vs, lagged one year. Sample: VDSA districts 1966-2000. Covariates:
Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in
parenthesis. *** p<0.01, ** p<0.05, * p<0.1
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Table A4: Farm Area Distribution as HYV-Wheat Rolled Out (VDSA)

% Area to % Area to % Area to % Area to
Marginal Farms Small Farms Medium Farms Large Farms

Wheat HYV_t-1 0.0704*** -0.0138 -0.0704* 0.0137

(0.0196) (0.0339) (0.0380) (0.0369)
District FE Yes Yes Yes Yes
State-Year FE Yes Yes Yes Yes
Observations 1533 1533 1533 1533
Within R? 0.0142 0.0136 0.0244 0.0217

Outcomes: Proportion operational land-holdings held by each farmer category. Treatment:
Proportion gross cultivated area under HY Vs, lagged one year. Sample: VDSA districts 1966-2000.
Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). Bootstrapped standard errors
in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

Table A5: Farm Area Distribution as HYV-Rice Rolled Out (VDSA)

% Area to % Area to % Area to % Area to
Marginal Farms Small Farms Medium Farms Large Farms

Rice HYV _t-1 0.0650*** -0.159*** -0.0597*** 0.154***

(0.0153) (0.0328) (0.0207) (0.0285)
District FE Yes Yes Yes Yes
State-Year FE Yes Yes Yes Yes
Observations 1551 1551 1551 1551
Within R? 0.0318 0.0625 0.0317 0.0727

Outcomes: Proportion operational land-holdings held by each farmer category. Treatment:
Proportion gross cultivated area under HY Vs, lagged one year. Sample: VDSA districts 1966-2000.
Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). Bootstrapped standard
errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

Table A6: Farm Area Distribution as HYVs Rolled Out, by Aquifer Depth (VDSA)

% Area to % Area to % Area to % Area to
Marginal Farms Small Farms Medium Farms Large Farms
Aquifer < 100 m x HYV_t-1 0.0503*** -0.0560** -0.0621*** 0.0677***
(0.0112) (0.0267) (0.0182) (0.0241)
Aquifer > 100 m x HYV_t-1 0.0589*** -0.0876*** -0.0183 0.0470
(0.0171) (0.0274) (0.0209) (0.0292)
District FE Yes Yes Yes Yes
State-Year FE Yes Yes Yes Yes
Observations 1549 1549 1549 1549
Within R? 0.0337 0.0282 0.0386 0.0363

Outcomes: Proportion operational land-holdings held by each farmer category. Treatment: Proportion gross
cultivated area under HYVs, lagged one year. Sample: VDSA districts 1966-2000. Covariates: Rainfall and

temperature shocks (lagged 1, 2, and 3 years). Bootstrapped standard errors in parenthesis. *** p<0.01, ** p<0.05,
*
p<0.1
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Table A7: Farm Area Distribution as HYVs Rolled Out, Concurrent
HYV Coverage (VDSA)

% Area to % Area to % Area to % Area to
Marginal Farms Small Farms Medium Farms Large Farms
HYV_t 0.0551*** -0.0725*** -0.0642*** 0.0817***
(0.0105) (0.0261) (0.0180) (0.0247)
District FE Yes Yes Yes Yes
State-Year FE Yes Yes Yes Yes
Observations 1375 1375 1375 1375
Within R? 0.0372 0.0278 0.0449 0.0448

Outcomes: Proportion operational land-holdings held by each farmer category. Treatment:
Proportion gross cultivated area under HY Vs, lagged one year. Sample: VDSA districts 1966-2000.
Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). Bootstrapped standard
errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

Table A8: Farm Area Distribution as HYVs Rolled Out, Concurrent
HYV Coverage (VDSA)

% Area to % Area to % Area to % Area to
Marginal Farms Small Farms Medium Farms Large Farms
HYV_t-5 0.0488*** -0.0735*** -0.0513*** 0.0760***
(0.0160) (0.0251) (0.0163) (0.0220)
District FE Yes Yes Yes Yes
State-Year FE Yes Yes Yes Yes
Observations 1530 1530 1530 1530
Within R? 0.0281 0.0359 0.0274 0.0463

Outcomes: Proportion operational land-holdings held by each farmer category. Treatment:
Proportion gross cultivated area under HY Vs, lagged one year. Sample: VDSA districts 1966-2000.
Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). Bootstrapped standard
errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

Table A9: Farm Area Distribution as HYVs Roll Out (VDSA, dropping
districts with > 5 missing HY'V values in 1990-2000)

% Area to % Area to % Area to % Area to
Marginal Farms Small Farms Medium Farms Large Farms
HYV_t-1 0.0467*** -0.0610** -0.0561*** 0.0704***
(0.0107) (0.0272) (0.0188) (0.0246)
District FE Yes Yes Yes Yes
State-Year FE Yes Yes Yes Yes
Observations 1296 1296 1296 1296
Within R? 0.0352 0.0282 0.0360 0.0427

Outcomes: Proportion operational land-holdings held by each farmer category. Treatment:
Proportion gross cultivated area under HY Vs, lagged one year. Sample: VDSA districts 1966-2000
with < 5 missing HY V;_1 values in the years 1990-2000. Covariates: Rainfall and temperature
shocks (lagged 1, 2, and 3 years). Bootstrapped standard errors in parenthesis. *** p<0.01, **
p<0.05, * p<0.1
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Table A10: Farm Area Distribution as HY Vs Roll Out (VDSA, dropping
districts with > 5 missing HYV values or with unstable HYV values in
in 1990-2000)

% Area to % Area to % Area to % Area to
Marginal Farms Small Farms Medium Farms Large Farms

HYV_t-1 0.0574*** -0.0971** -0.0820*** 0.122%**

(0.0165) (0.0375) (0.0254) (0.0337)
District FE Yes Yes Yes Yes
State-Year FE Yes Yes Yes Yes
Observations 741 741 741 741
Within R? 0.0576 0.0581 0.0464 0.0803

Outcomes: Proportion operational land-holdings held by each farmer category. Treatment:
Proportion gross cultivated area under HY Vs, lagged one year. Sample: VDSA districts 1966-
2000 with < 5 missing HY Vz_1 values in the years 1990-2000, and no more than 2 HY V;_; values
that change by more than 5% in a year during 1990-2000. Covariates: Rainfall and temperature
shocks (lagged 1, 2, and 3 years). Bootstrapped standard errors in parenthesis. *** p<0.01, **
p<0.05, * p<0.1

Table A11: Farmland Distribution (ARIS-REDS, Split by Proximity to Town)

% Families % Area to % Area to % Area to % Area to

Villages < 14km from town in 1971: Landless Marginal Farms  Small Farms Medium Farms Large Farms
HYV_t-1 0.0914 0.0274 0.204* -0.514%** 0.283

(0.0955) (0.0517) (0.108) (0.192) (0.219)
Observations 191 190 190 190 190
Within R? 0.116 0.0810 0.0759 0.148 0.0366
Villages < 14km from town in 1971:
HYV_t-1 -0.0753 0.00364 0.194* -0.581%*** 0.384

(0.167) (0.0195) (0.0994) (0.212) (0.247)
District FE Yes Yes Yes Yes Yes
State-Year FE Yes Yes Yes Yes Yes
Observations 190 186 186 186 186
Within R? 0.0309 0.0373 0.131 0.202 0.124

Outcomes: Proportion operational land-holdings held by each farmer category, within the ARIS-REDS panel (1971 households
and their splits). Treatment: Proportion gross cultivated district area under HY Vs, lagged one year. Sample: ARIS-REDS 1971
households and their split-offs if living in a village < 5 km from a bus stop (Panel 1), or if living in a village > 5km from a
bus stop (Panel 2). Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). Bootstrapped standard errors in
parenthesis. *** p<0.01, ** p<0.05, * p<0.1
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Table A12: Farmland Distribution (ARIS-REDS, Split by Proximity to Bus Stop)

% Families % Area to % Area to % Area to % Area to

Villages < 5km from bus stop in 1971: Landless Marginal Farms  Small Farms  Medium Farms Large Farms
HYV_t-1 0.0939 0.0197 0.369*** -0.799*** 0.410*

(0.131) (0.0604) (0.116) (0.185) (0.220)
Observations 202 200 200 200 200
Within R2 0.0477 0.0847 0.225 0.209 0.0869
Villages < 5km from bus stop in 1971:
HYV_t-1 -0.131 -0.0728 0.141 -0.199 0.131

(0.175) (0.0496) (0.151) (0.216) (0.232)
District FE Yes Yes Yes Yes Yes
State-Year FE Yes Yes Yes Yes Yes
Observations 182 182 182 182 182
Within R2 0.0526 0.0981 0.128 0.0743 0.0795

Outcomes: Proportion operational land-holdings held by each farmer category, within the ARIS-REDS panel (1971 households
and their splits). Treatment: Proportion gross cultivated district area under HY Vs, lagged one year. Sample: ARIS-REDS 1971
households and their split-offs if living in a village < 5 km from a bus stop (Panel 1), or if living in a village > 5km from a bus stop
(Panel 2). Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). Bootstrapped standard errors in parenthesis.

* p<0.01, ** p<0.05, * p<0.1

Table A13: Mean Welfare Effects (ARIS-REDS, NFHS)

PC Income Height Education

HYV_t-1 0.0410 0.373* 0.756***
(0.249) (0.191) (0.266)
Observations 10354 397302 405838
R? 0.00265 0.0000298  0.000183
District FE Yes Yes Yes
State-Year FE Yes Yes Yes

Outcomes: Per capita income (col 1), female height (col 2), female education
(col 3). Treatment: Proportion gross cultivated district area under HY Vs, lagged
one year before income was measured (col 1) or one year before birth (cols 2,
3). Sample: ARIS-REDS 1971 households and their split-offs (coll), rural 1998
and 2015 NFHS samples, pooled (cols 2-3). Covariates: Rainfall and temperature
shocks (lagged 1, 2, and 3 years). District-clustered standard errors in parenthesis.
* p<0.01, ** p<0.05, * p<0.1

Table A14: Education Distribution (NFHS)

No Primary  Secondary Higher
Education Education Education Education
HYV_t-1 0.0451 -0.0673*** -0.00898 0.0315**
(0.0324) (0.0225) (0.0260) (0.0143)
District FE Yes Yes Yes Yes
State-Year FE Yes Yes Yes Yes
Observations 13892 13892 13892 13892
Within R? 0.00105 0.00275 0.000506 0.00170

Outcomes: District-level percent of women achieving no education, primary
education, secondary education, or higher education. Treatment: Proportion gross
cultivated district area under HY Vs, lagged one year before birth. Sample: 1998 and
2015 NFHS samples. Covariates: Rainfall and temperature shocks (lagged 1, 2, and
3 years). District-clustered standard errors in parenthesis. *** p<0.01, ** p<0.05,
* p<0.1
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