000000 000 000 000000 000000 000000	MOTIVATION	Data	IDENTIFICATION	DISTRIBUTIONAL RESULTS	A Problem	MECHANISM GLANCE
	000000	000	000	00000000	00000000	0000000

The Green Revolution and Rural Inequality: India

Leah E. M. Bevis, Vidhya Soundararajan

World Bank Land Conference May 2024

・ロト < 団ト < 三ト < 三ト < 三ト < ロト

 MOTIVATION
 DATA
 IDENTIFICATION
 DISTRIBUTIONAL RESULTS
 A PROBLEM
 MECHANISM GLANCE

 •00000
 000
 000
 00000000
 00000000
 00000000

THE GREEN REVOLUTION: GLOBAL

- Paired introduction of high-yielding varieties (primarily rice, wheat) with increased irrigation and modern inputs
 - Early period 1961-1980, later period 1980-2000.
- Higher yields, intensification *and* land expansion, lower grain prices, decreased mortality and fertility rates, increased life expectancy, smaller populations, increased per capita GDP, increased non-ag labor productivity after a decade (Evenson & Gollin 2003; Gollin, Hansen, Windgender 2018; McArthur & McCord 2017)

• Surprising lack of focus on poverty, hunger, and inequality.

 GR meant to provide "a lasting solution" to the "perpetual problems of rural poverty and hunger," and to kickstart rural economies so as to "improve the quality of life at the grassroots in an appreciable measure" (Dhanagare 1987)
 MOTIVATION
 DATA
 IDENTIFICATION
 DISTRIBUTIONAL RESULTS
 A PROBLEM
 MECHANISM GLANCE

 •00000
 000
 000
 000
 00000000
 00000000
 00000000

THE GREEN REVOLUTION: GLOBAL

- Paired introduction of high-yielding varieties (primarily rice, wheat) with increased irrigation and modern inputs
 - Early period 1961-1980, later period 1980-2000.
- Higher yields, intensification *and* land expansion, lower grain prices, decreased mortality and fertility rates, increased life expectancy, smaller populations, increased per capita GDP, increased non-ag labor productivity after a decade (Evenson & Gollin 2003; Gollin, Hansen, Windgender 2018; McArthur & McCord 2017)
- Surprising lack of focus on poverty, hunger, and inequality.
 GR meant to provide "a lasting solution" to the "perpetual problems of rural poverty and hunger," and to kickstart rural economies so as to "improve the quality of life at the grassroots in an appreciable measure" (Dhanagare 1987)

 MOTIVATION
 DATA
 IDENTIFICATION
 DISTRIBUTIONAL RESULTS
 A PROBLEM
 MECHANISM GLANCE

 •00000
 000
 000
 000
 00000000
 00000000
 00000000

THE GREEN REVOLUTION: GLOBAL

- Paired introduction of high-yielding varieties (primarily rice, wheat) with increased irrigation and modern inputs
 - Early period 1961-1980, later period 1980-2000.
- Higher yields, intensification *and* land expansion, lower grain prices, decreased mortality and fertility rates, increased life expectancy, smaller populations, increased per capita GDP, increased non-ag labor productivity after a decade (Evenson & Gollin 2003; Gollin, Hansen, Windgender 2018; McArthur & McCord 2017)
- Surprising lack of focus on poverty, hunger, and inequality.
 - GR meant to provide "a lasting solution" to the "perpetual problems of rural poverty and hunger," and to kickstart rural economies so as to "improve the quality of life at the grassroots in an appreciable measure" (Dhanagare 1987)

In fact, economists from the GR era in India^{*} were highly concerned with distributional consequences, writing:

- Smallest farmers failing to adopt HYVs, taking out more credit to do so, or profiting less from them
- Controversy over the impact of HYVs on ag wages
- Landlords converting tenants/sharecroppers into laborers, possibly eroding land reform
- Increased skewness in land, farming assets, rural welfare
 Dhanagare (1987): "[A]II available statistics indicate greater and greater immiseration and pauperisation as the green revolution technology package has spread in... India."

In fact, economists from the GR era in India^{*} were highly concerned with distributional consequences, writing:

- Smallest farmers failing to adopt HYVs, taking out more credit to do so, or profiting less from them
- Controversy over the impact of HYVs on ag wages
- Landlords converting tenants/sharecroppers into laborers, possibly eroding land reform
- Increased skewness in land, farming assets, rural welfare
 Dhanagare (1987): "[A]II available statistics indicate greater and greater immiseration and pauperisation as the green revolution technology package has spread in... India."

In fact, economists from the GR era in India^{*} were highly concerned with distributional consequences, writing:

- Smallest farmers failing to adopt HYVs, taking out more credit to do so, or profiting less from them
- Controversy over the impact of HYVs on ag wages
- Landlords converting tenants/sharecroppers into laborers, possibly eroding land reform
- Increased skewness in land, farming assets, rural welfare
 Dhanagare (1987): "[A]II available statistics indicate greater and greater immiseration and pauperisation as the green revolution technology package has spread in... India."

In fact, economists from the GR era in India^{*} were highly concerned with distributional consequences, writing:

- Smallest farmers failing to adopt HYVs, taking out more credit to do so, or profiting less from them
- Controversy over the impact of HYVs on ag wages
- Landlords converting tenants/sharecroppers into laborers, possibly eroding land reform
- Increased skewness in land, farming assets, rural welfare
 - Dhanagare (1987): "[A]ll available statistics indicate greater and greater immiseration and pauperisation as the green revolution technology package has spread in... India."

Motivation	Data	Identification	DISTRIBUTIONAL RESULTS	A Problem	Mechanism Glance
00●000	000	000		00000000	0000000
WE AS	K				

• Did the green revolution influence the distribution of agricultural land in rural India?

• Did it increase rural economic inequality?

• Through what mechanisms did these changes occur?

・ロト < 団ト < 三ト < 三ト < 三ト < ロト

MOTIVATION	Data	Identification	Distributional Results	A Problem	Mechanism Glance
000000	000	000		0000000	0000000

WE ASK...

- Did the green revolution influence the distribution of agricultural land in rural India?
 - Yes. → increased number of marginal farms, increase in land share held by the smallest and largest farms, reduction in middle-sized farms.
- Did it increase rural economic inequality?
 - Yes. → increased inequality in productive assets, per capita income, female schooling — improvements at top of distribution with no change at bottom
- Through what mechanisms did these changes occur?

MOTIVATION	Data	Identification	Distributional Results	A Problem	Mechanism Glance
000000	000	000		0000000	0000000

WE ASK...

- Did the green revolution influence the distribution of agricultural land in rural India?
 - Yes. → increased number of marginal farms, increase in land share held by the smallest and largest farms, reduction in middle-sized farms.
- Did it increase rural economic inequality?
 - Yes. → increased inequality in productive assets, per capita income, female schooling — improvements at top of distribution with no change at bottom
- Through what mechanisms did these changes occur?

MOTIVATION	Data	Identification	DISTRIBUTIONAL RESULTS	A Problem	Mechanism Glance
000000	000	000		00000000	0000000

WE ASK...

- Did the green revolution influence the distribution of agricultural land in rural India?
 - Yes. → increased number of marginal farms, increase in land share held by the smallest and largest farms, reduction in middle-sized farms.
- Did it increase rural economic inequality?
 - Yes. → increased inequality in productive assets, per capita income, female schooling — improvements at top of distribution with no change at bottom
- Through what mechanisms did these changes occur?
 - Ongoing work, but...

 MOTIVATION
 DATA
 IDENTIFICATION
 DISTRIBUTIONAL RESULTS
 A PROBLEM
 MECHANISM GLANCE

 0000000
 000
 000
 00000000
 00000000
 00000000

BACKGROUND: THE GREEN REVOLUTION IN INDIA

High-yielding varieties (HYVs), mostly rice and wheat, introduced for 1966-67 planting. Adoption trends vary with aquifer depth.

▲ロト ▲帰 ト ▲ ヨ ト ▲ 目 目 の Q ()

 MOTIVATION
 DATA
 IDENTIFICATION
 DISTRIBUTIONAL RESULTS
 A PROBLEM
 MECHANISM GLANCE

 0000000
 000
 000
 00000000
 00000000
 00000000

BACKGROUND: THE GREEN REVOLUTION IN INDIA

High-yielding varieties (HYVs), mostly rice and wheat, introduced for 1966-67 planting. Adoption trends vary with aquifer depth.

A data problem note up front. Above, I use district-level VDSA (Village Dynamics Studies in South Asia) through 1989.

▲ロト ▲帰 ト ▲ ヨ ト ▲ 目 目 の Q ()

 MOTIVATION
 DATA
 IDENTIFICATION
 DISTRIBUTIONAL RESULTS
 A PROBLEM
 MECHANISM GLANCE

 0000 ●0
 000
 000
 00000000
 00000000
 00000000
 00000000

BACKGROUND: THE GREEN REVOLUTION IN INDIA

High-yielding varieties (HYVs), mostly rice and wheat, introduced for 1966-67 planting. Adoption trends vary with aquifer depth.

A data problem note up front. Above, I use district-level VDSA (Village Dynamics Studies in South Asia) through 1989. **This is what 1990-2000 looks like.**

MOTIVATION DATA IDENTIFICATION DISTRIBUTIONAL RESULTS A PROBLEM MECHANISM GLANCE 00000 000 000 00000000 000000000 000000000 000000000

LITERATURE AND CONTRIBUTION

Disparate literature links ag productivity to rural inequality.

- New ag technologies often differentially benefit richer farmers (Goldstein & Udry 2008; Foster & Rosenzweig 2010; Hess, Jaimovich, & Schundeln 2021)
- And their impact on wages varies (Bustos, Caprettini, and Ponticelli, 2016)
- Increased ag productivity may influence family structure and farm division (Foster and Rosenzweig, 2002; Bardhan et al., 2014)

 Increased ag productivity → demand for education, non-ag sector spill-overs under some conditions (Foster & Rosenzweig 2001, 2004; Moscona 2019; Bustos, Caprettini & Ponticelli 2016, Hornbeck & Keskin 201

MOTIVATION
00000DATAIDENTIFICATION
DISTRIBUTIONAL RESULTSA PROBLEM
00000000MECHANISM GLANCE
000000000000000000000000000000000000

LITERATURE AND CONTRIBUTION

Disparate literature links ag productivity to rural inequality.

- New ag technologies often differentially benefit richer farmers (Goldstein & Udry 2008; Foster & Rosenzweig 2010; Hess, Jaimovich, & Schundeln 2021)
- And their impact on wages varies (Bustos, Caprettini, and Ponticelli, 2016)
- Increased ag productivity may influence family structure and farm division (Foster and Rosenzweig, 2002; Bardhan et al., 2014)
- Increased ag productivity → demand for education, non-ag sector spill-overs under some conditions (Foster & Rosenzweig 2001, 2004; Moscona 2019; Bustos, Caprettini & Ponticelli 2016, Hornbeck & Keskin 201

MOTIVATIONDATAIDENTIFICATIONDISTRIBUTIONAL RESULTSA PROBLEMMECHANISM GLANCE00

LITERATURE AND CONTRIBUTION

Disparate literature links ag productivity to rural inequality.

- New ag technologies often differentially benefit richer farmers (Goldstein & Udry 2008; Foster & Rosenzweig 2010; Hess, Jaimovich, & Schundeln 2021)
- And their impact on wages varies (Bustos, Caprettini, and Ponticelli, 2016)
- Increased ag productivity may influence family structure and farm division (Foster and Rosenzweig, 2002; Bardhan et al., 2014)
- Increased ag productivity → demand for education, non-ag sector spill-overs under some conditions (Foster & Rosenzweig 2001, 2004; Moscona 2019; Bustos, Caprettini & Ponticelli 2016, Hornbeck & Keskin 2019

MOTIVATION
00000DATAIDENTIFICATIONDISTRIBUTIONAL RESULTSA PROBLEMMECHANISM GLANCE00

LITERATURE AND CONTRIBUTION

Disparate literature links ag productivity to rural inequality.

- New ag technologies often differentially benefit richer farmers (Goldstein & Udry 2008; Foster & Rosenzweig 2010; Hess, Jaimovich, & Schundeln 2021)
- And their impact on wages varies (Bustos, Caprettini, and Ponticelli, 2016)
- Increased ag productivity may influence family structure and farm division (Foster and Rosenzweig, 2002; Bardhan et al., 2014)
- Increased ag productivity → demand for education, non-ag sector spill-overs under *some* conditions (Foster & Rosenzweig 2001, 2004; Moscona 2019; Bustos, Caprettini & Ponticelli 2016, Hornbeck & Keskin 2011

MOTIVATION
00000DATAIDENTIFICATION
DISTRIBUTIONAL RESULTSA PROBLEM
000000000MECHANISM GLANCE
0000000000000000000000000000000000000

LITERATURE AND CONTRIBUTION

Disparate literature links ag productivity to rural inequality.

- New ag technologies often differentially benefit richer farmers (Goldstein & Udry 2008; Foster & Rosenzweig 2010; Hess, Jaimovich, & Schundeln 2021)
- And their impact on wages varies (Bustos, Caprettini, and Ponticelli, 2016)
- Increased ag productivity may influence family structure and farm division (Foster and Rosenzweig, 2002; Bardhan et al., 2014)
- Increased ag productivity → demand for education, non-ag sector spill-overs under *some* conditions (Foster &

Rosenzweig 2001, 2004; Moscona 2019; Bustos, Caprettini & Ponticelli 2016, Hornbeck & Keskin 2015)

MOTIVATION
000000DATAIDENTIFICATIONDISTRIBUTIONAL RESULTSA PROBLEMMECHANISM GLANCE
00

LITERATURE AND CONTRIBUTION

Disparate literature links ag productivity to rural inequality.

- New ag technologies often differentially benefit richer farmers (Goldstein & Udry 2008; Foster & Rosenzweig 2010; Hess, Jaimovich, & Schundeln 2021)
- And their impact on wages varies (Bustos, Caprettini, and Ponticelli, 2016)
- Increased ag productivity may influence family structure and farm division (Foster and Rosenzweig, 2002; Bardhan et al., 2014)
- Increased ag productivity → demand for education, non-ag sector spill-overs under *some* conditions (Foster & Rosenzweig 2001, 2004; Moscona 2019; Bustos, Caprettini & Ponticelli 2016, Hornbeck & Keskin 2015)

We directly estimate the influence of a new ag technology on rural distribution of productive capital + rural income. MOTIVATION
000000DATAIDENTIFICATIONDISTRIBUTIONAL RESULTSA PROBLEMMECHANISM GLANCE
00

LITERATURE AND CONTRIBUTION

Disparate literature links ag productivity to rural inequality.

- New ag technologies often differentially benefit richer farmers (Goldstein & Udry 2008; Foster & Rosenzweig 2010; Hess, Jaimovich, & Schundeln 2021)
- And their impact on wages varies (Bustos, Caprettini, and Ponticelli, 2016)
- Increased ag productivity may influence family structure and farm division (Foster and Rosenzweig, 2002; Bardhan et al., 2014)
- Increased ag productivity → demand for education, non-ag sector spill-overs under *some* conditions (Foster & Rosenzweig 2001, 2004; Moscona 2019; Bustos, Caprettini & Ponticelli 2016, Hornbeck & Keskin 2015)

We directly estimate the influence of a new ag technology on rural distribution of productive capital + rural income. *Seems that lack of non-ag sector spill-over trapped the poorest in low-profit ag, with accompanying welfare impacts.*

DISTRICT-LEVEL VDSA DATA

DATA

.00

District-level data on agricultural conditions from the Village Dynamics in South Asia (VDSA) panel collected by ICRISAT

DISTRIBUTIONAL RESULTS

A PROBLEM

MECHANISM GLANCE

- Covers 311 districts across nineteen states, 1966-2011.
- Tracks the 1966 districts by apportioning data from subsequently-created districts.
- Data on cropping patterns, input use, area under high yielding varieties, irrigated area, etc.
- Holds the number of / acreage under marginal (< 1ha), small (1-4 ha), medium (4-10 ha) and large (>10 ha) farms approx every 5 years.
- Critically, the VDSA begins in 1966, the year that HYVs were introduced to India.

Using the household-level, ag-focused ARIS-REDS (dropping Jammu and Kashmir) to explore mechanisms.

- **1971.** 4,527 households in 259 villages in 100 districts of 17 states. In theory, representative of India's rural population.
- **1982.** Tracked 3,135 households outside of Assam (28% attrition) if intact or under 1971 head. Splits/splinters eligible for refresh along with new HHs (1,767 HHs).
- **1999.** Tracked 1982 households outside of Jammu and Kashmir, including splits/splinters within the village: 6,202 HHs (19% attrition). Refresh sampled new HHs only (1,271 HHs).
- Listing data

Using the household-level, ag-focused ARIS-REDS (dropping Jammu and Kashmir) to explore mechanisms.

- **1971.** 4,527 households in 259 villages in 100 districts of 17 states. In theory, representative of India's rural population.
- **1982.** Tracked 3,135 households outside of Assam (28% attrition) if intact or under 1971 head. Splits/splinters eligible for refresh along with new HHs (1,767 HHs).
- **1999.** Tracked 1982 households outside of Jammu and Kashmir, including splits/splinters within the village: 6,202 HHs (19% attrition). Refresh sampled new HHs only (1,271 HHs).

• Listing data

Using the household-level, ag-focused ARIS-REDS (dropping Jammu and Kashmir) to explore mechanisms.

- **1971.** 4,527 households in 259 villages in 100 districts of 17 states. In theory, representative of India's rural population.
- **1982.** Tracked 3,135 households outside of Assam (28% attrition) if intact or under 1971 head. Splits/splinters eligible for refresh along with new HHs (1,767 HHs).
- **1999.** Tracked 1982 households outside of Jammu and Kashmir, including splits/splinters within the village: 6,202 HHs (19% attrition). Refresh sampled new HHs only (1,271 HHs).

• Listing data

Using the household-level, ag-focused ARIS-REDS (dropping Jammu and Kashmir) to explore mechanisms.

- **1971.** 4,527 households in 259 villages in 100 districts of 17 states. In theory, representative of India's rural population.
- **1982.** Tracked 3,135 households outside of Assam (28% attrition) if intact or under 1971 head. Splits/splinters eligible for refresh along with new HHs (1,767 HHs).
- **1999.** Tracked 1982 households outside of Jammu and Kashmir, including splits/splinters within the village: 6,202 HHs (19% attrition). Refresh sampled new HHs only (1,271 HHs).
- Listing data

NATIONAL FAMILY HEALTH SURVEY

Pooled individual-level maternal height and education data from two rounds of the National Family Health Survey (NFHS) conducted in 1998-1999 and 2015-2016.

- Nationally + urban/rural representative household surveys. 1998-99 representative at state level, 2015-2016 at district level.
- Maintain rural households only: 53,187 + 416,610 women
- Women 15-49 years old at time of survey. Women in the 2015/16 dataset born as early as 1965; women in the 1998/99 dataset as early as 1950.

MOTIVATION DATA **IDENTIFICATION** DISTRIBUTIONAL RESULTS A PROBLEM MECHANISM GLANCE

ID STRATEGY

How did the roll-out of HYVs impact the number of / land share held by marginal, small, medium-sized, or large farmers?

$$Num_{dt}^{k} = \phi_0 + \phi_1 HYV_{dt-1} + \phi_2 X_{dt-1} + \delta_d + \delta_{st} + \epsilon_{dt}$$

Number of / share of ag land owned by farmers of size *k* in district *d* in year *t*, *Share*^{*k*}_{*dt*}. District-level prevalence of HYV adoption, HYV_{dt} , measured in share of gross cultivated land. District fixed effects δ_d , state-year fixed effects δ_{st} , and district-level concurrent and recent rainfall and temperature shocks, X_{dt} . MOTIVATION DATA **IDENTIFICATION** DISTRIBUTIONAL RESULTS A PROBLEM MECHANISM GLANCE

ID STRATEGY

How did the roll-out of HYVs impact the number of / land share held by marginal, small, medium-sized, or large farmers?

$$Num_{dt}^{k} = \phi_0 + \phi_1 HYV_{dt-1} + \phi_2 X_{dt-1} + \delta_d + \delta_{st} + \epsilon_{dt}$$

Number of / share of ag land owned by farmers of size *k* in district *d* in year *t*, *Share*^{*k*}_{*dt*}. District-level prevalence of HYV adoption, HYV_{dt} , measured in share of gross cultivated land. District fixed effects δ_d , state-year fixed effects δ_{st} , and district-level concurrent and recent rainfall and temperature shocks, X_{dt} .

ID Strategy: While roll-out across states not random, we follow Bharadwaj et al. (2018) to claim that within a state-year, district-level variation is plausibly (mostly?) exogenous. We find supporting evidence — only rainfall/temp shocks are correlated with HYV roll-out, not socioeconomic characteristics.

MOTIVATION
0000000DATA
000IDENTIFICATION
000000000DISTRIBUTIONAL RESULTS
000000000A PROBLEM
000000000MECHANISM GLANCE
00000000

DID ROBUSTNESS CHECK

As a robustness check, we follow Sekhri & Shastry (2024) to examine how landholding patterns changed differentially over time in water-rich vs. water-scarce districts.

$$Num_{dt}^{k} = \zeta_0 + \Sigma_t \zeta_1^t A_d * t + \zeta_2 X_{dt-1} + \delta_d + \delta_t + \upsilon_{dt}$$

Each ζ_1^t provides a year-specific change in the marginal effect of having thicker (≥ 100 meters) aquifers ($A_d = 1$), vis-a-vis the unidentified marginal effect in 1970.

If HYVs increases land inequality, marginal effect should increase for marginal and/or large farmers (i.e., ζ_1^t more positive over time) and decrease for medium-sized farmers (i.e., ζ_1^t more negative over time).

MOTIVATION
0000000DATA
000IDENTIFICATION
000000000DISTRIBUTIONAL RESULTS
000000000A PROBLEM
000000000MECHANISM GLANCE
00000000

DID ROBUSTNESS CHECK

As a robustness check, we follow Sekhri & Shastry (2024) to examine how landholding patterns changed differentially over time in water-rich vs. water-scarce districts.

$$Num_{dt}^{k} = \zeta_0 + \Sigma_t \zeta_1^t A_d * t + \zeta_2 X_{dt-1} + \delta_d + \delta_t + \upsilon_{dt}$$

Each ζ_1^t provides a year-specific change in the marginal effect of having thicker (≥ 100 meters) aquifers ($A_d = 1$), vis-a-vis the unidentified marginal effect in 1970.

If HYVs increases land inequality, marginal effect should increase for marginal and/or large farmers (i.e., ζ_1^t more positive over time) and decrease for medium-sized farmers (i.e., ζ_1^t more negative over time).

Note: No data for a pre-trend check.

 MOTIVATION
 DATA
 IDENTIFICATION
 DISTRIBUTIONAL RESULTS
 A PROBLEM
 MECHANISM GLANCE

 000000
 000
 000
 00000000
 00000000
 00000000
 00000000

OTHER RURAL INEQUALITY OUTCOMES

I apply the original equation to rural distribution of productive farming assets, per capita income, female education levels.

$$Share_{dt}^{k} = \phi_0 + \phi_1 HYV_{dt-1} + \phi_2 X_{dt-1} + \delta_d + \delta_{st} + \epsilon_{dt}$$

Now, *Share*^{*k*}_{*dt*} constructed from surveyed ARIS-REDS households within a district (*d*) and round (*t*), or from surveyed, rural NFHS women born in any given year (*t*) within a given district (*d*). I.e., share of surveyed households/ women in *d* and *t* falling within the 1st, 2nd, 3rd, or 4th (*k*th) income, height, or education quartile.

NUMBER OF MARGINAL FARMS

	(1)	(2)	(3)	(4)	(5)
	# Marginal	# Small	# Medium	# Large	Farm
	Farms	Farms	Farms	Farms	Density
Panel A: VDSA					
HYV_t-1	70.61***	-23.23**	-14.49**	-0.0544	0.0616***
	(16.95)	(11.63)	(6.400)	(1.442)	(0.0236)
Outcome Mean	158.9	103.0	27.86	7.507	0.389
Observations	1696	1696	1696	1696	1698
Within R ²	0.0184	0.0250	0.0125	0.0121	0.00522
Panel B: ARIS-R	EDS				
HYV_t-1	5.193**	-2.006	0.677	0.858	4.722
	(2.191)	(3.071)	(1.168)	(0.856)	(3.318)
Outcome Mean	5.074	7.255	3.251	1.035	16.62
Observations	678	678	678	678	678
Within R ²	0.0216	0.0148	0.00778	0.00274	0.0183
District FE	Yes	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes	Yes

Outcomes cols 1-4: farm counts at district (village) level in Panel A (B). Col 5: farm count divided by district area (village farm count) in Panel A (B). Treatment: Proportion gross cultivated area under HYVs, lagged one year. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1

000000 000 000 000000 000000 000000		LOOPEID ITTRODEEM MILCHARDMOEA	NCL
	0000 000 000	0000000 0000000	

ACREAGE UNDER MARGINAL FARMS

	(1)	(2)	(3)	(4)
	% Area to	% Area to	% Area to	% Area to
	Marginal	Small	Medium	Large
Panel A: VDSA				
HYV_t-1	0.0525***	-0.0637***	-0.0514***	0.0625***
	(0.0103)	(0.0235)	(0.0163)	(0.0212)
Outcome Mean	0.142	0.390	0.278	0.190
Observations	1551	1551	1551	1551
Within R ²	0.0337	0.0272	0.0344	0.0359
Panel B: ARIS-RI	EDS			
HYV_t-1	0.0930	-0.265**	0.110	0.0614
	(0.0766)	(0.131)	(0.126)	(0.109)
Outcome Mean	0.138	0.387	0.314	0.161
Observations	677	677	677	677
Within R ²	0.0195	0.0250	0.0173	0.00138
District FE	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes

Outcomes: % of district (village-observed) agricultural area under each farm type (as observed) in Panel A (B). Treatment: Proportion gross cultivated area under HYVs, lagged one year. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1

MOTIVATION	Data	IDENTIFICATION	DISTRIBUTIONAL RESULTS	A Problem	Mechanism Glance
000000	000	000	00000000	00000000	000000

ROBUSTNESS

Results are similar if: we examine the roll-out of wheat HYVs and rice HYVs alone (rice slightly larger impact), we separate districts by aquifer thickness, we examine concurrent HYV prevalence or prevalence lagged by 5 years, or we use the 1970-1980, -1986, -1990, -1995, or entire 1970-2000 sample.
ROBUSTNESS

Results are similar if: we examine the roll-out of wheat HYVs and rice HYVs alone (rice slightly larger impact), we separate districts by aquifer thickness, we examine concurrent HYV prevalence or prevalence lagged by 5 years, or we use the 1970-1980, -1986, -1990, -1995, or entire 1970-2000 sample.

Results NOT driven by measurement error in 1990-2000 HYV acreage: results similar in the earlier data alone, when we dropping districts with more missing 1990-2000 data, and when we additionally drop likely-errored values. In fact, it seems like measurement error in HYV roll-out is biasing treatment effects towards zero, as it would if classical.

 MOTIVATION
 DATA
 IDENTIFICATION
 DISTRIBUTIONAL RESULTS
 A PROBLEM
 MECHANISM GLANCE

 000000
 000
 000
 0000000
 00000000
 00000000

DID CHECK: NUMBER OF FARMS (VDSA)

 MOTIVATION
 DATA
 IDENTIFICATION
 DISTRIBUTIONAL RESULTS
 A PROBLEM
 Mechanism Glance

 000000
 000
 000
 00000000
 00000000
 00000000

DID CHECK: ACREAGE UNDER FARMS (VDSA)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

LAND VS. WELFARE

Livelihood diversification \rightarrow distribution of other productive assets or total household income "much less inequitous than land or farm income distribution" (Bhalla and Chadha, 1982b)?

Moreover, medium-sized farmers – perhaps particularly near towns – may be exiting agriculture for potentially lucrative non-farm opportunities (Rao, Eberhard, and Bharadwaj 2022).

▲ロト ▲帰 ト ▲ ヨ ト ▲ 目 目 の Q ()

So while some Indian economists at the time did warn of distributional welfare impacts, seems like it could go either way...

 MOTIVATION
 DATA
 IDENTIFICATION
 DISTRIBUTIONAL RESULTS
 A PROBLEM
 Mechanism Glance

 000000
 000
 000
 000000000
 00000000
 00000000

FARMING ASSET DISTRIBUTION (ARIS-REDS)

	Quartile 1	Quartile 2	Quartile 3	Quartile 4
HYV₋t-1	0.0279	-0.138	-0.204*	0.314*
	(0.157)	(0.156)	(0.117)	(0.167)
District FE	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes
Observations	259	259	259	259
Within R ²	0.104	0.0417	0.0995	0.0574

Outcomes: District-level percent of **farmers** falling in the 1st, 2nd, 3rd, or 4th asset quartile (cols 1-4). Treatment: Proportion gross cultivated district area under rice/wheat HYVs, lagged one year. Sample: ARIS-REDS. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1

▲ロト ▲帰 ト ▲ ヨ ト ▲ 目 目 の Q ()

 MOTIVATION
 DATA
 IDENTIFICATION
 DISTRIBUTIONAL RESULTS
 A PROBLEM
 Mechanism Glance

 000000
 000
 000
 000000000
 00000000
 000000000

PER CAPITA INCOME DISTRIBUTION (ARIS-REDS)

	Quartile 1	Quartile 2	Quartile 3	Quartile 4
HYV₋t-1	0.151	0.000744	-0.267***	0.115
	(0.126)	(0.0918)	(0.0929)	(0.101)
District FE	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes
Observations	259	259	259	259
Within R ²	0.0582	0.0696	0.0677	0.0653

Outcomes: District-level percent of **households** falling in the 1st, 2nd, 3rd, or 4th per capita income quartile (cols 1-4). Treatment: Proportion gross cultivated district area under rice/wheat HYVs, lagged one year. Sample: ARIS-REDS. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1

FEMALE EDUCATION DISTRIBUTION (RURAL NFHS)

	Quartile 1	Quartile 2	Quartile 3	Quartile 4
HYV_t-1	0.0451 (0.0324)	-0.0672*** (0.0225)	-0.0461** (0.0227)	0.0685*** (0.0247)
District FE	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes
Observations Within R ²	13892 0.00105	13892 0.00275	13892 0.00100	13892 0.00317

Outcomes: District-level proportion of women reporting each level of education. Treatment: Proportion gross cultivated area under rice/wheat HYVs, lagged one year. Sample: District-year aggregates of NFHS pooled cross-section. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1

This is despite an overall positive impact on mean education levels. The results are similar if we break female education down by achievement levels.

VDSA HYV AND VDSA YIELDS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

VDSA HYV AND ENDOG ARIS-REDS ADOPTION

VDSA Yields

ARIS-REDS Adoption

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

MOTIVATION	Data	Identification	DISTRIBUTIONAL RESULTS	A PROBLEM	MECHANISM GLANCE
000000	000	000	00000000	0000000	000000

HYV "EFFECT" BY STATE CATEGORIES

	ARIS-REDS			VDSA	
	Endog	Wheat	Rice	Coarse Cereal	Calories per
	Adoption	Yields	Yields	Yields	Cereal Hectare
Less Predictive States \times HVY_t	-0.0940	-0.0423	0.219	0.0188	29.98**
	(0.181)	(0.137)	(0.139)	(0.0836)	(14.29)
Yield Predictive States \times HVY_t	0.970 ^{***}	0.343**	0.665***	0.205	94.25***
	(0.269)	(0.142)	(0.129)	(0.179)	(19.21)
District FE	Yes	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes	Yes
Observations	9910	7444	8280	8549	8765
Within R ²	0.0114	0.00826	0.0187	0.00529	0.0184

Outcomes: Endogenous adoption of HYV varieties in ARIS-REDS data (col 1), VDSA district-level yields in tons/hectare (cols 2-4), VDSA district-level calories per hectare in 100,000 kj/hectare (col 5). Treatment: Proportion gross cultivated area under rice/wheat HYVs. Covariates: Rainfall and temperature shocks (lagged 1, 2, 3 years). District-clustered errors. *** p < 0.01, ** p < 0.05, * p < 0.1

NUMBER OF FARMERS (VDSA)

	# Marginal	# Small	# Medium	# Large
	Farms	Farms	Farms	Farms
Null/negative yield effect \times HVY_t-1	88.84 ^{***}	-16.71	-20.29*	-0.638
	(20.41)	(16.74)	(10.68)	(2.175)
Positive yield effect \times HVY_t-1	39.75	-34.28**	-4.681**	0.933
	(29.44)	(13.40)	(2.369)	(1.240)
District FE	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes
Observations	1696	1696	1696	1696
Within R ²	0.0201	0.0258	0.0149	0.0125

Outcomes: Number of farms within each size category. Treatment: Proportion gross cultivated area under HYVs, lagged one year. Sample: VDSA districts 1966-2000. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1

<ロト < @ ト < E ト < E ト E = のへで</p>

MOTIVATION	Data	IDENTIFICATION	DISTRIBUTIONAL RESULTS	A PROBLEM	MECHANISM GLANCE
000000	000	000	00000000	00000000	0000000

AGRICULTURAL AREA SHARE (VDSA)

	% Area to	% Area to	% Area to	% Area to
	Marginal	Small	Medium	Large
Null/negative yield effect \times HVY_t-1	0.0504***	-0.0836**	-0.0570**	0.0902***
	(0.0118)	(0.0334)	(0.0231)	(0.0297)
Positive yield effect \times HVY_t-1	0.0565***	-0.0261	-0.0408**	0.0103
	(0.0196)	(0.0246)	(0.0172)	(0.0214)
District FE	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes
Observations	1551	1551	1551	1551
Within R ²	0.0338	0.0295	0.0348	0.0410

Outcomes: Percent of agricultural area held by farms within each size category. Treatment: Proportion gross cultivated area under HYVs, lagged one year. Sample: VDSA districts 1966-2000. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1

INIO II VIIIIOIN DIIIII	100111110111011	DISTRIBUTIONAL RESOLIS	A I KODLEM	WILCHANGIN GLANCE
000000 000	000	00000000	000000000	000000

FARMING ASSET DISTRIBUTION (ARIS-REDS)

	Quartile 1	Quartile 2	Quartile 3	Quartile 4
Null/negative yield effect \times HVY_t-1	-0.0256	-0.0142	-0.353**	0.393*
	(0.172)	(0.172)	(0.152)	(0.209)
Positive yield effect \times HVY_t-1	0.129	-0.373	0.0796	0.164
	(0.282)	(0.264)	(0.214)	(0.288)
District FE	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes
Observations	259	259	259	259
Within R ²	0.106	0.0499	0.110	0.0615

Outcomes: District-level percent of farmers falling in the 1st, 2nd, 3rd, or 4th per capita income quartile (cols 1-4). Treatment: Proportion gross cultivated district area under rice/wheat HYVs, lagged one year. Sample: ARIS-REDS. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in parenthesis. *** p < 0.01, ** p < 0.15, * p < 0.15, **

<ロト < 母 ト < 豆 ト < 豆 ト < 目 = の < 0</p>

000000 000 000 0000000 0000000 0000000	Motivation	Data	Identification	DISTRIBUTIONAL RESULTS	A PROBLEM	MECHANISM GLANCE
	000000	000	000	00000000	00000000	000000

PER CAPITA INCOME DISTRIBUTION (ARIS-REDS)

	Quartile 1	Quartile 2	Quartile 3	Quartile 4
Null/negative yield effect \times HVY_t-1	0.221	0.00846	-0.244**	0.0152
	(0.147)	(0.121)	(0.108)	(0.133)
Positive yield effect \times HVY_t-1	0.0183	-0.0139	-0.309*	0.304**
	(0.211)	(0.129)	(0.172)	(0.144)
District FE	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes
Observations	259	259	259	259
Within R ²	0.0624	0.0697	0.0683	0.0776

Outcomes: District-level percent of farmers falling in the 1st, 2nd, 3rd, or 4th per capita income quartile (cols 1-4). Treatment: Proportion gross cultivated district area under rice/wheat HYVs, lagged one year. Sample: ARIS-REDS. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in parenthesis. *** p < 0.01, ** p < 0.15, * p < 0.15, **

▲ロト ▲帰 ト ▲ ヨ ト ▲ 目 目 の Q ()

MOTIVATIONDATAIDENTIFICATIONDISTRIBUTIONAL RESULTSA PROBLEMMECHANISM GLANCE000

FEMALE EDUCATION DISTRIBUTION (RURAL NFHS)

	Quartile 1	Quartile 2	Quartile 3	Quartile 4
Null/negative yield effect \times HVY_t-1	0.0297	-0.0619*	-0.0466	0.0796**
	(0.0445)	(0.0331)	(0.0343)	(0.0361)
Positive yield effect \times HVY_t-1	0.0604	-0.0725**	-0.0455	0.0576*
	(0.0468)	(0.0304)	(0.0298)	(0.0336)
District FE	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes
Observations	13892	13892	13892	13892
Within R ²	0.00109	0.00276	0.00100	0.00323

Outcomes: District-level proportion of women reporting each level of education. Treatment: Proportion gross cultivated area under HYVs, lagged one year. Sample: District-year aggregates of NFHS pooled cross-section. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1

▲ロト ▲帰 ト ▲ ヨ ト ▲ 目 目 の Q ()

MOTIVATION DATA	IDENTIFICATION	DISTRIBUTIONAL RESULTS	A PROBLEM	MECHANISM GLANCE
000000 000	000	00000000	0000000	000000

LIKELIHOOD OF BEING MARGINAL

	(1)	(2)	(3)	(4)
	Base Year	Base Year	Base Year	Base Year
	Marginal:	Small:	Medium:	Large:
	Marginal	Marginal	Marginal	Marginal
Less yield predictive $\times \Delta$ HVY_t	0.433	-0.0440	-0.0453	-0.764***
	(0.431)	(0.149)	(0.0897)	(0.249)
Yield predictive $\times \ \Delta \ \mathrm{HVY_t}$	0.467*	0.724***	-0.213	-0.868***
	(0.256)	(0.267)	(0.240)	(0.241)
District FE	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes
Observations	1301	2622	1658	552
Within R ²	0.0106	0.00971	0.00439	0.0652

Outcome: Indicator for owning a marginal farm (<1 hectare) in 1982 or 1999. ΔHYV_t provides the change in the proportion of gross cropped area dedicated to HYVs between 1971 and 1982 (1982 obs) or between 1982 and 1999 (1999 obs). Sample: ARIS-REDS panel and refresh households in 1982 and 1999 if in the base year (1971 or 1982, respectively) the household: was landless (col 1), owned agricultural land (col 2), owned 0-1 hectare of agricultural land (col 3), owned 1-10 hectares of agricultural land (col 4), owned >10 hectares of agricultural land (col 5). District-clustered standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

MOTIVATION	Data	Identification	DISTRIBUTIONAL RESULTS	A Problem	MECHANISM GLANCE
000000	000	000	00000000	00000000	000000

LAND ACQUISITION BY LANDLESS

	(1) Own land	(2) Own < 1 ha	
Less yield predictive $\times \ \Delta \ {\rm HVY_t}$	-0.527**	-0.492***	-0.0349
	(0.254)	(0.165)	(0.219)
Yield predictive $\times \ \Delta \ \mathrm{HVY_t}$	0.922***	0.780 ^{***}	0.142
	(0.226)	(0.178)	(0.114)
District FE	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes
Observations	1566	1566	1566
Within R ²	0.0213	0.0195	0.00359

Outcome: Indicator for owning land. Sample: ARIS-REDS households in 1982 and 1999 if the household owned no land in the previous round (1971 for 1982, 1982 for 1999). ΔHYV_t provides the change in the proportion of gross cropped area dedicated to HYVs since 1971. District-clustered errors. *** p < 0.01, ** p < 0.05, * p < 0.1

Motivation	Data	Identification	DISTRIBUTIONAL RESULTS	A Problem	MECHANISM GLANCE
000000	000	000	00000000	00000000	000000

LIKELIHOOD OF FARM/HOUSEHOLD DISSOLUTION

	(1)	(2)	(3)	(4)
	Marginal Farms:	Small Farms:	Medium Farms:	Large Farms:
	Exit Panel	Exit Panel	Exit Panel	Exit Panel
Less yield predictive $\times \ \Delta \ \mathrm{HVY_t}$	-0.168	0.234	-0.191	-0.118
	(0.323)	(0.157)	(0.153)	(0.251)
Yield predictive $\times \ \Delta \ \mathrm{HVY_t}$	-0.721**	-0.738**	-0.694	1.370 ^{***}
	(0.344)	(0.345)	(0.507)	(0.485)
District FE	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes
Observations	938	1647	902	269
Within R ²	0.0130	0.0125	0.0194	0.0225

Outcome: Indicator for exiting the panel in 1982 or 1999. ΔHYV_t provides the change in the proportion of gross cropped area dedicated to HYVs between 1971 and 1982 (1982 obs) or between 1982 and 1999 (1999 obs). Sample: ARIS-REDS panel and refresh households in 1982 and 1999 if in the base year (1971 or 1982, respectively) the household: was landless (col 1), owned agricultural land (col 2). In both columns 1982 households with a household head over 40 in 1971 were dropped, since these households are likely to have exited the panel due to dissolution rather than migration (Foster and Rosenzweig, 2002). District-clustered standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

AGRICULTURAL WAGES

	Male	Female	Male	Female
HVY_t-1	-0.140 (0.268)	-0.421 (0.338)		
Null/negative yield effect \times HVY_t-1			-0.552 (0.386)	-0.308 (0.445)
Positive yield effect \times HVY_t-1			0.493 (0.346)	-0.613* (0.363)
District FE State-Year FE Observations Within R ²	Yes Yes 618 0.0225	Yes Yes 595 0.0107	Yes Yes 618 0.0341	Yes Yes 595 0.0113

Outcome: Village-level agricultural wage rate for men (cols 1, 3) and women (cols 2, 4). Sample: ARIS-REDS villages. District-clustered standard errors in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1

・ロト・(型ト・(ヨト・(ロト))
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・</li

NON-AGRICULTURAL WAGES

	Male	Female	Male	Female
HVY_t-1	-1.338 ^{***} (0.498)	-1.078 (0.772)		
Less yield predictive \times HVY_t-1			-1.264** (0.630)	-1.196 (0.945)
Yield predictive \times HVY_t-1			-1.497** (0.617)	-0.702 (1.057)
District FE State-Year FE Observations Within R ²	Yes Yes 468 0.0794	Yes Yes 338 0.112	Yes Yes 468 0.0796	Yes Yes 338 0.113

Outcome: Village-level non-agricultural wage rate for men (cols 1, 3) and women (cols 2, 4). Sample: ARIS-REDS villages. District-clustered standard errors in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1

・ロト・(型ト・(ヨト・(ロト))
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・</li

MOTIVATION	Data	Identification	DISTRIBUTIONAL RESULTS	A Problem	MECHANISM GLANCE
000000	000	000	00000000	00000000	0000000

NON-AGRICULTURAL ACTIVITIES

	Landless			Landed		
	(1)	(2)	(3)	(4)	(5)	(6)
	Non-Ag	Non-Ag	Non-Ag	Non-Ag	Non-Ag	Non-Ag
	Wages	Salary	Self-Emp	Wages	Salary	Self-Emp
Null/negative yield effect \times HVY_t-1	-0.511**	0.286	0.0378	-0.286***	-0.0338	0.0208
	(0.235)	(0.206)	(0.244)	(0.0889)	(0.0619)	(0.106)
Positive yield effect \times HVY_t-1	0.339**	-0.0383	-0.0643	-0.0464	-0.0971	-0.0979
	(0.170)	(0.105)	(0.198)	(0.114)	(0.113)	(0.201)
Outcome Mean	0.227	0.170	0.343	0.0963	0.149	0.297
District FE	Yes	Yes	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Observations	3783	3783	3783	11265	11265	11265
Within R ²	0.00891	0.00503	0.00539	0.00632	0.000962	0.00214

Outcome: Indicator for household having income from non-agricultural wages (cols 1, 5), from salary (cols 2, 6), from non-agricultural self employment (3, 7), or from any of those 3 sources (cols 4, 8). Sample: ARIS-REDS panel and refresh households if the household is landless (col 1-4), or owns agricultural land (col 5-8). District-clustered standard errors in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1

MOTIVATION	Data	IDENTIFICATION	DISTRIBUTIONAL RESULTS	A Problem	MECHANISM GLANCE
000000	000	000	00000000	00000000	000000

THANKS!

Thanks for your time and attention and thoughts!

4 日 ト 4 目 ト 4 王 ト 4 王 ト 三 日 9 4 (*)

ARIS-REDS DATA

- **1971.** Additional Rural Incomes Survey (ARIS): 4,527 households in 259 villages in 100 districts of 17 states. In theory, representative of India's rural population, oversampling villages with greater HYV uptake and wealthier (larger-farm) households. Weights provided.
- **1982.** Rural Economic and Demographic (REDS) survey: tracked 3,135 panel households outside of Assam. Tracked HHs if either intact or under 1971 head; split-offs not tracked.
 - Attrition (28%): '71 head died and the HH splintered, entire HH left village, HH refused/absent (rare).
 - Refresh (1,767 HHs): *did* sample spit-offs and splinter HHs + new households not in the 1968 listing data.
- **1999.** Tracked 1982 households outside of Jammu and Kashmir, including splits / splinter HHs residing in the same village: 6,202 HHs.
 - Attrition (19%): entire HH left village, HH refused/absent.
 - Refresh (1,271 HHs): new households not in the 1981 listing data.

- District strata: Intensive Agricultural Development Program (IADP), villages within the Intensive Agricultural Area Program (IAAP), and all other villages.
- Income strata: H (≥ Rs 6,000), M (Rs 3,600-6,000), L (< Rs 3,600). Approx 20 HHs selected per village, oversampling H- and M-income HHs such that no L-income HHs were sampled if > 20 H- and M-income HHs existed in village.
- In theory, provided 1971 weights should up-weight poorer households and down-weight richer households such that a nationally representative sample is obtained.

Back

These weights don't \rightarrow a nationally-representative land distribution...

District-level % Ag Land Held by Farm Size

	1966-1971	1972-1981	1982-2000	All
Rainfall this year (cy mm)	0.00555**	0.00309***	0.00396**	0.00400***
	(0.00215)	(0.00116)	(0.00171)	(0.00119)
Rain last year (cv mm)	0.00463**	-0.000419	0.00151	0.00143
•	(0.00228)	(0.00114)	(0.00156)	(0.00106)
Rain two years ago (cv mm)	0.00597**	-0.000983	-0.000261	0.000914
	(0.00241)	(0.00108)	(0.00170)	(0.00111)
Temperature this year (cv C)	-0.00323	-0.00548**	0.00387	-0.00134
	(0.00328)	(0.00227)	(0.00361)	(0.00250)
Temperature last year (cv C)	-0.000693	0.00115	-0.00181	-0.00308
	(0.00330)	(0.00212)	(0.00296)	(0.00191)
Temperature two years ago (cv C)	-0.00173	0.00377*	-0.00594*	-0.00474**
	(0.00274)	(0.00209)	(0.00338)	(0.00232)
Population density (log person/hectare)	0.00770	-0.00925	0.0106	-0.0354
	(0.0790)	(0.0143)	(0.0401)	(0.0324)
Urban population (% of total)	-0.380	-0.0500	0.0821	0.0224
	(0.811)	(0.184)	(0.131)	(0.107)
Gender ratio (male:female)	0.496*	-0.105	0.557	0.0800
	(0.262)	(0.333)	(0.424)	(0.219)
Literacy rate (%)	0.246	0.0778	0.199	0.248*
	(0.228)	(0.104)	(0.177)	(0.128)
Literacy gender ratio (male:female)	0.0387	0.0250	-0.0103	-0.00672
	(0.0350)	(0.0186)	(0.0168)	(0.0114)
District and State-Year Fixed Effects	Yes	Yes	Yes	Yes
Weather Shocks Joint Significance	0.0300	0.000	0.000	0.000
Socioeconomic Var Joint Significance	0.190	0.500	0.560	0.370
Observations	1197	2810	4273	8295
R^2	0.0323	0.0134	0.00954	0.0116

Outcome: Proportion gross cultivated area under HYVs. *** p<0.01, ** p<0.05, * p<0.1

FARM AREA DISTRIBUTION (ARIS-REDS PANEL)

	% Families	% Area to	% Area to	% Area to	% Area to
	Landless	Marginal	Small	Medium	Large
HYV_t-1	-0.0168	0.00928	0.274*	-0.443***	0.159
	(0.131)	(0.0467)	(0.154)	(0.135)	(0.142)
District FE	Yes	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes	Yes
Observations	269	269	269	269	269
Within R ²	0.00806	0.0399	0.0783	0.0771	0.0206

Weights: 1971 household weights applied to all rounds. Outcomes: District-level proportion agricultural land held by each farmer category, within the ARIS-REDS dataset (panel + refresh). Treatment: Proportion gross cultivated area under HYVs, lagged one year. Sample: VDSA districts 1966-2000. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1

A 25% increase in acreage under HYVs leads to a 6.8 pp increase in area under small farms, and an 11.1 pp decrease in the area under medium farms. An insignificant 4.0 pp increase in area under large farms. Back

▲ロト ▲帰 ト ▲ ヨ ト ▲ 目 目 の Q ()

FARM NUMBERS (ARIS-REDS)

	# Marginal	# Small	# Medium	# Large
	Farms	Farms	Farms	Farms
HYV_t-1	4.238	20.30***	-10.28*	2.186
	(3.598)	(5.808)	(6.059)	(3.343)
District FE	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes
Observations	271	271	271	271
Within R ²	0.0476	0.0840	0.0779	0.0197

Outcomes: District-level proportion agricultural land held by each farmer category, within the ARIS-REDS dataset (panel + refresh). Treatment: Proportion gross cultivated area under HYVs, lagged one year. Sample: VDSA districts 1966-2000. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1

Back

FARM AREA DISTRIBUTION IN ARIS-REDS SURVEY YEARS (VDSA)

	% Area to Marginal	% Area to Small	% Area to Medium	% Area to Large
HYV_t-1	0.0860*** (0.0172)	-0.0892** (0.0377)	-0.111*** (0.0270)	0.114*** (0.0360)
District FE	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes
Observations	594	594	594	594
Within R ²	0.103	0.0712	0.132	0.112

Outcomes: Proportion operational land-holdings held by each farmer category. Treatment: Proportion gross cultivated area under HYVs, lagged one year. Sample: VDSA districts 1970, 1980, 2000. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1

FARMLAND DISTRIBUTION IN ARIS-REDS SURVEY DISTRICTS (VDSA)

	% Area to	% Area to	% Area to	% Area to
	Marginal	Small	Medium	Large
HYV_t-1	0.0634***	-0.0854**	-0.0575**	0.0795**
	(0.0206)	(0.0393)	(0.0253)	(0.0365)
District FE	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes
Observations	511	511	511	511
Within R ²	0.0510	0.0669	0.0303	0.0460

Outcomes: Proportion operational land-holdings held by each farmer category. Treatment: Proportion gross cultivated area under HYVs, lagged one year. Sample: VDSA districts observed in ARIS-REDS survey, 1966-2000. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

MEAN EDUCATION, HEIGHT EFFECTS (RURAL NFHS)

	Height	Years Edu
HYV_t-1	0.373* (0.191)	0.756*** (0.266)
District FE	Yes	Yes
State-Year FE	Yes	Yes
Observations	397302	405838
Within R ²	0.0000208	0.000102

Outcomes: Height in cm (col 1), educational attainment in years (col 2). Treatment: Proportion gross cultivated area under HYVs, lagged one year. Sample: NFHS pooled cross-section. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1

Back

FEMALE EDUCATION DISTRIBUTION (RURAL NFHS)

	No Education	Primary Education	Secondary Education	Higher Education
HYV_t-1	0.0451 (0.0324)	-0.0673*** (0.0225)	-0.00898 (0.0260)	0.0315** (0.0143)
District FE	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes
Observations	13892	13892	13892	13892
Within R ²	0.00105	0.00275	0.000506	0.00170

Outcomes: District-level proportion of women reporting each level of education. Treatment: Proportion gross cultivated area under HYVs, lagged one year. Sample: District-year aggregates of NFHS pooled cross-section. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in parenthesis. *** p < 0.01, ** p < 0.05, ** p < 0.1

Back

▲ロト ▲帰 ト ▲ ヨ ト ▲ 目 目 の Q ()

FEMALE HEIGHT DISTRIBUTION (RURAL NFHS)

	Quartile 1	Quartile 2	Quartile 3	Quartile 4
HYV_t-1	-0.0136	-0.00718	0.00184	0.0191
	(0.0187)	(0.0185)	(0.0174)	(0.0259)
District FE	Yes	Yes	Yes	Yes
State-Year FE	Yes	Yes	Yes	Yes
Observations	13892	13892	13892	13892
Within R ²	0.000656	0.000423	0.000989	0.000370

Outcomes: District-level proportion of women in the 1st, 2nd, 3rd, or 4th height quantile. Treatment: Proportion gross cultivated area under HYVs, lagged one year. Sample: District-year aggregates of NFHS pooled cross-section. Covariates: Rainfall and temperature shocks (lagged 1, 2, and 3 years). District-clustered standard errors in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1

LAND SELLING

	(1)	(2)	(3)
Δ HYV_t	0.246 ^{**} (0.101)	0.165 (0.128)	
Land owned in base year (IHS acres)		0.0655*** (0.0152)	
(Land owned) ²		-0.00817* (0.00417)	
Land owned \times Δ HYV_t		0.0688 (0.0965)	
(Land owned) ² $\times \Delta$ HYV_t		-0.00945 (0.0250)	
Less yield predictive $\times \ \Delta \ \mathrm{HVY_t}$			0.126 (0.126)
Yield predictive $\times \ \Delta \ \mathrm{HVY_t}$			0.520*** (0.101)
District FE State-Year FE Observations Within R ²	Yes Yes 5622 0.0113	Yes Yes 5415 0.0401	Yes Yes 5622 0.0132

Outcome: Binary indicator for selling land between 1971 and 1982 (when 1982 is the base year) or between 1982 and 1999 (when 1982 is the base year). Sample: ARIS-REDS households, if they owned land in the base year. District-clustered errors. *** p < 0.01, ** p < 0.05, ** p < 0.01

LAND SELLING

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

LAND PURCHASING

	(1)	(2) Base Vear	(3)	(4)	(5) Base Vear
	All	Landless	All	All	Landless
Δ HYV_t	0.000588 (0.0661)	0.0536 (0.112)	-0.0896 (0.0908)		
Land owned in base year (IHS acres)			-0.0336*** (0.0123)		
(Land owned) ²			0.00423 (0.00287)		
Land owned $\times \Delta \mathrm{HYV_t}$			0.117* (0.0681)		
$(\text{Land owned})^2 \times \Delta \text{ HYV}_{\text{-}t}$			-0.0270* (0.0159)		
Less yield predictive $\times \ \Delta \ {\rm HVY_t}$				-0.0285 (0.0479)	-0.0423 (0.0968)
Yield predictive $\times \Delta$ HVY_t				0.0575 (0.160)	0.198 (0.244)
District FE State-Year FE Observations Within R ²	Yes Yes 8553 0.00193	Yes Yes 2931 0.00538	Yes Yes 6922 0.00643	Yes Yes 8553 0.00203	Yes Yes 2931 0.00613

Outcome: Binary indicator for purchasing land between 1971 and 1982 (when 1982 is the base year) or between 1982 and 1999 (when 1982 is the base year). Sample: ARIS-REDS households. District-clustered errors. *** p < 0.01, ** p < 0.05, * p < 0.1