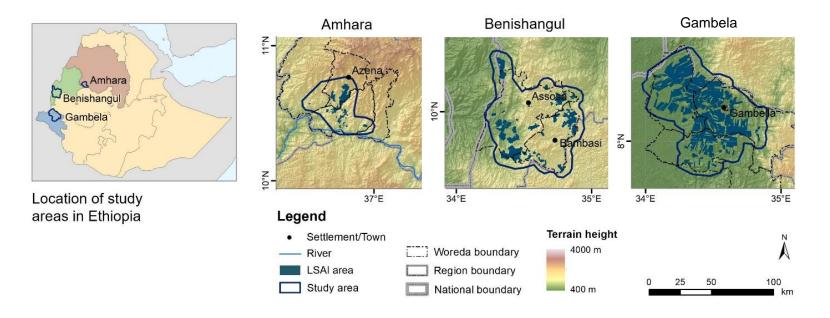
Monitoring of agricultural investment areas in Ethiopia based on remote sensing time-series data

World Bank Land Conference 2024 | 13-17 May 2024 | Washington, DC

Christian.Mesmer@giz.de | Project Manager | Support to Responsible Agricultural Investments (S2RAI/RGIL), Addis Ababa, Ethiopia

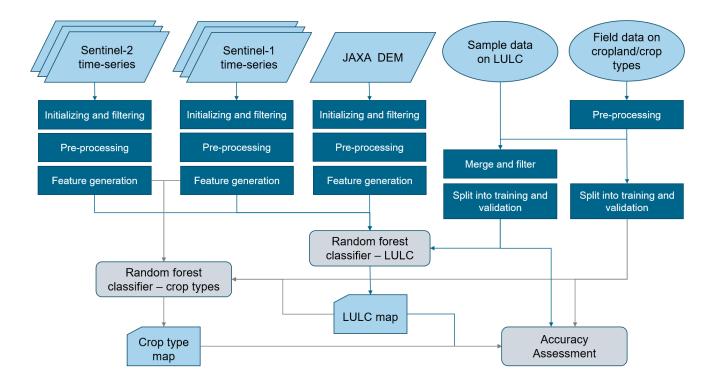
<u>Christina.Eisfelder@dlr.de</u> | German Aerospace Center (DLR) | German Remote Sensing Data Center (DFD), Oberpfaffenhofen, Germany

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH



- Promotion of large-scale agricultural investments (LSAI) to transform the agricultural sector as part of the *Ethiopian Homegrown Economy Strategy*
- Albeit the agricultural sector being the major GDP contributor, investment and development has been slowly progressing
- A plethora of agricultural investors (land lessees) neither implements business plans nor complies with contractual agreements
- The GoE lacks capacities to efficiently and effectively monitor agricultural investments in land, and thus vast areas of land remain unproductive.
- → Remote sensing offers tremendous potential for decision-making and performance monitoring of agricultural investments.
- → GIZ S2RAI entered a project cooperation with the German Aerospace Center (DLR) to develop a remote sensing monitoring method for LSAI in Ethiopia and build capacities accordingly.

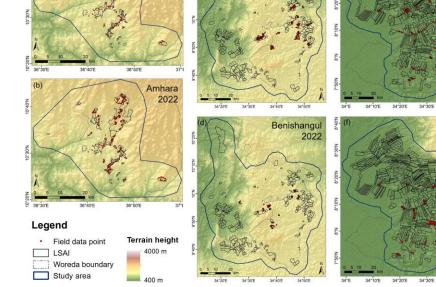
Target Areas: Seven Woredas in three regions


- Three study sites in Amhara, Benishangul-Gumuz and Gambela regions
- Sites include LSAI areas with a 5-km buffer

RS4AIM Project: Objectives

- RS4AIM: Remote Sensing for large-scale Agricultural Investment Monitoring in Ethiopia
- Objectives:
 - Development of classification methods for cropland and crop type classification using supervised image classification based on *in-situ* data and *open-source* high-resolution Earth observation data
 - Application of methods to derive information products on cropland and crop types for the years 2021 and 2022 for the three study areas in Ethiopia
 - Provision of training courses on remote sensing-based land cover and crop type classifications for GoE staff

Methodology: Classification Workflow


Source: Eisfelder et al. 2023

Field data: In-situ data collection on crop types

- Field surveys in 2021 and 2022
- Data on 21 different crop types collected

Amhara			Ben		Gar		
Crop type	rop type 2021 2022		Crop type	2021	2022	Crop type	
Maize	113	233	Maize	169	180	Maize	
Sunflower	62	79	Sorghum	293	183	Sorghum	
Sesame	20	21	Sesame	19	-	Sesame	
Mung bean	27	53	Mung bean	3	-	Mung bean	
Soy bean	75	128	Soy bean	157	63	Soy bean	1
Haricot	37	20	Groundnut	17	-	Cotton	1
bean	37	20	Haricot	2		Mango	
Pepper	29	22	bean	2	-	tree	
Chickpea	25	-	Pepper	100	199		
Wheat	63	99	Mango	22	66		
Coffee	74	92	tree	22	66		
Teff	16	22	Teff	24	20		
Finger	21	12	Niger seed	29	48		
millet	21	13	Flax seed	1	-		

Reference data available for crop type classification in 2021 and 202	2
---	---

Amhara

2021

Locations of field data collected during the field campaigns in 2021 and 2022

Benishangul

202

Source: Eisfelder et al. 2024

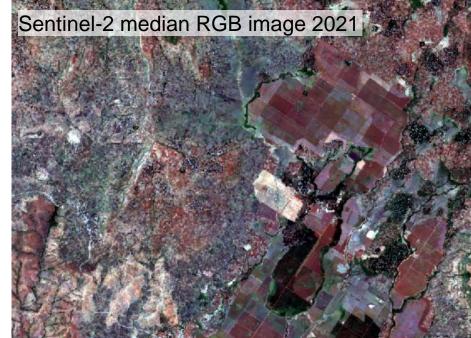
2022 102

36

23

Gambela

34*40/E 34*50/E


34"4075

Gambela 2022

2021

Classification: Data base

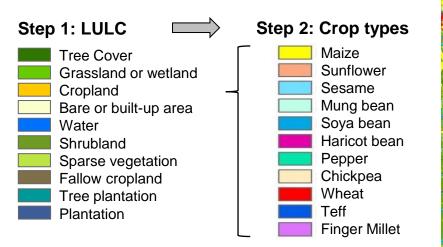
- High-resolution remote sensing timeseries data
 - Multispectral: Sentinel-2
 - Radar: Sentinel-1
- Slope information from elevation data
- Generation of selected spectral and temporal metrics
- Random forest classifier
- Classification results have spatial resolution of 10 m

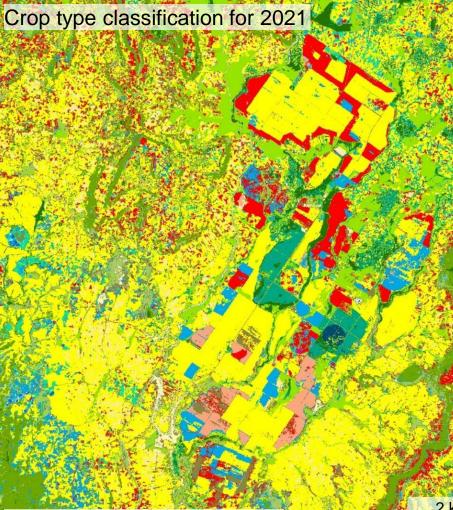
Example: Subset of Amhara study area

Classification: Cropland

- Classification of land use / land cover (LULC) classes
- Identification of cropland areas
- Mapping of tree plantations

Step 1: LULC

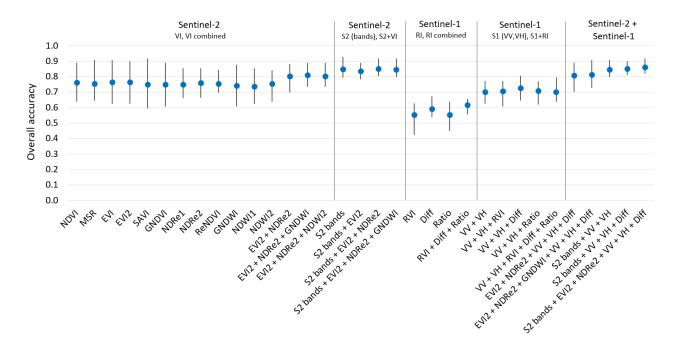

LULC classification for 2021



2 km

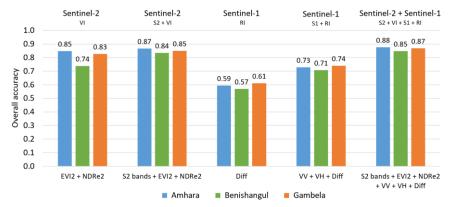
Classification: Crop Types

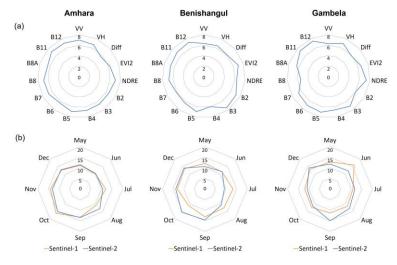
- Differentiation of crop types within cropland areas
- Field data on crop types required as input information



Example: Subset of Amhara study area

Results: Input data set comparison for crop type classification

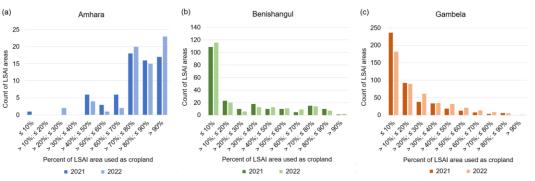

 33 input data set variants tested for crop type classification for the three study areas and two years of investigation



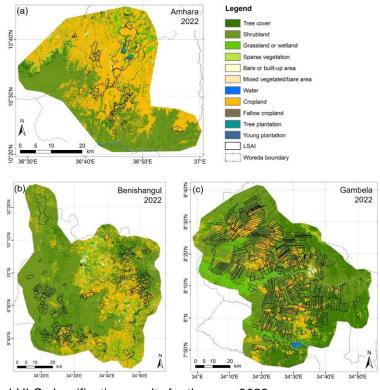
Source: Eisfelder et al. 2024

Results: Input data set comparison and parameter importance

- Sentinel-2 bands allow for high classification accuracy
- Overall highest accuracies for variant that combines Sentinel-2 and Sentinel-1 bands and parameters
- Most important parameters and months differ among study areas



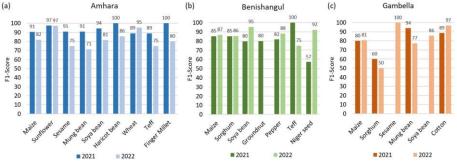
Summed variable importance for selected variant for (a) variables belonging to one band/index/parameter and (b) variables from the same month, separated for Sentinel-1 and Sentinel-2.


Average overall accuracy for each of the study areas derived with selected variants for the five categories of input features.

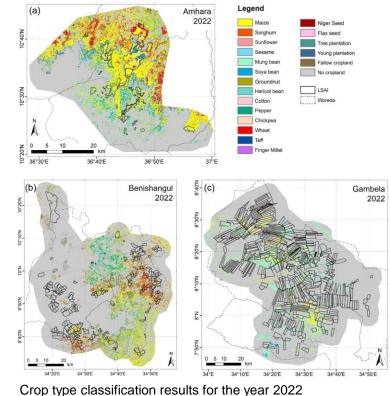
Results: Cropland classification

- Amhara: ~80% of land within LSAI areas used as cropland in 2021 and 2022
- Benishangul and Gambela: only 17-21% of land within LSAI areas used as cropland
- → Great potential for further cropland development in Benishangul and Gambela study areas

Count of LSAI areas with a defined percentage range of area used as cropland


LULC classification results for the year 2022

Accuracies for the cropland classifications


	Amhara		Benishangul		Gambela		Adapted from:	
	2021	2022	2021	2022	2021	2022		
Producer's accuracy [%] for cropland class	95.7	96.4	90.7	87.5	97.9	93.1	Eisfelder et al. 2024	
User's accuracy [%] for cropland class	90.1	92.6	91.9	90.7	89.5	84.8	aiz	

Results: Crop type classification

- Most important crops (cropland area within LSAI area on which crop is grown):
 - Amhara: Maize (~60%), soy bean (~10%), wheat (~8%)
 - Benishangul: Maize (~35-40%), sorghum (~35-40%), soy bean (~10-20%)
 - Gambela: Mung bean (~60%), cotton (~25%)

Class-specific accuracies for the crop type classifications

Adapted from: Eisfelder et al. 2024

Capacity Building: Training Courses for Regional Experts

- Three days training in 2022 (18 participants from three regions) and in 2023 (23 participants from five regions)
- Principles of Remote Sensing, cloud processing via Google Earth Engine, applications of land use and crop type classifications

Summary: RS4AIM Project

- Method development for cropland and crop type classification in Ethiopia based on open-source remote sensing data
- Inclusion of Sentinel-2 multispectral and Sentinel-1 radar data time-series for classification
- Classification procedure can be easily adapted to be applied for additional study areas and years
- Cloud processing environment (GEE) allows application without own large computational power and software
- Mapping of cropland and crop types performed for 2021 and 2022 for three study areas in Ethiopia
- Capacity building on remote sensing-based classification for regional experts

Potential Application: Data-driven provision of valuable insights for decision making and optimizing resource management

- Compliance and risk assessment: Identification of non-compliance and implementing corrective measures
- Identification of accurate crop planting distribution: Basis for yield estimates, market predictions and agricultural revenue generation
- Land use planning and water management: Identification of suitable areas, optimizing land allocation and irrigation scheduling
- Monitoring: crop health (and pests), weather and farm infrastructure
- Optimization of supply chain logistics
- Investment Decision Support: Assessment of performance and potential risks

Outlook

- Investors and governments can gain a comprehensive understanding of operations, leading to improved productivity, sustainability, and informed decision-making throughout the investment lifecycle.
- Monitoring and evaluation tool under conditions of scarce resources (costly field visits, etc.)
- GEE source code is delivered to be utilized for further interventions
- RS data used is global and open source, and site-specific parameter can easily be adjusted
- → RS4AIM application in other geographical settings
- Integration of RS4AIM with the Commercial Agriculture Management Information System (CAMIS)

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices Bonn and Eschborn

Friedrich-Ebert-Allee 32 + 36 53113 Bonn, Germany T +49 228 44 60 - 0 F +49 228 44 60 - 17 66

E info@giz.de I www.giz.de Dag-Hammarskjöld-Weg 1 - 5 65760 Eschborn, Germany T +49 61 96 79 - 0 F +49 61 96 79 - 11 15

