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Based on rich cadastral data we examine the effects of land privatization on pasture
productivity. We identify the causal effect using a design with a staggered absorbing
treatment and heterogeneous treatment effects accounting for spatial spillovers. We
collect a balanced panel of 16 thousand plots located in southern Kazakhstan including
precise land allocation dates and remotely sensed geographic and climatic features over
24 years. Results show that land allocation has a significantly negative effect on the
pasture vegetation comparable with a drought occurring once in 25 years for individual
farms and ones in six years for all users on average. Controlling for the spatial spillover
of privatization of neighboring land further aggravates the negative effects of titling
especially in proximity to settlements. Pasture privatization under a restricted land
market with imperfect institutions and high transaction costs distorts existing grazing
practices and causes pastures to deteriorate.
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1 Introduction

The conventional wisdom on land tenure in agricultural economics is the idea that private property
rights, when appropriately supplemented with institutions, result in improvements in land use effi-
ciency and agricultural productivity (Deininger and Feder 2001). There is indeed much empirical
evidence for these phenomena, along with associated benefits for equity (Holden and Otsuka 2014)
and this makes land reform an important policy tool for agricultural intensification and global de-
velopment (Deininger and Binswanger 2001). However, land reform are often partially successful,
especially in the context of semi-authoritarian regimes that emerged in the transition, such as former
Soviet countries (Kvartiuk and Petrick 2021; Petrick 2021). Secure property rights and liberal land
markets may spur investment and create efficiency and equity benefits, but there are risks of elite
capture of large land areas with inefficient and inequitable outcomes (Holden and Otsuka 2014).

The discourse around pastoral land tenure has been subject to a different set of debates, particu-
larly in arid and semi-arid regions. The privatization of previously ‘open access’ pastures was seen
as the solution to the problem of the ‘tragedy of the commons’ (Hardin 1968; Coase 1960). How-
ever, land individualization (whether private or leasehold) has also resulted in a number of negative
side-effects, such as: preferential land access that left others on limited common land (Rohde et
al. 2006), negative spillovers elsewhere (Masami Kaneko et al. 2009); fragmentation of grazing
systems and reduction in livestock mobility (Galvin et al. 2008); reduced herbivore populations
(Boone and Hobbs 2004); and land degradation (W. J. Li, Ali, and Zhang 2007). This has been
termed ‘the tragedy of enclosure’ (Reid, Galvin, and Kruska 2008). At the same time, an under-
standing emerged that many of the pastures imagined by Hardin had never been ‘open access’ at
all but were actively managed by users as common property (Ostrom 1990; Dietz, Ostrom, and
Stern 2003). In other cases, some extent of open access is a crucial adaptation to high climatic
variability, as it promotes the mobility and flexibility required to exploit shifting forage resources
(Behnke 2018).

Many land reforms continue to promote individualization of rangeland tenure with an increasing
number of studies attempting to quantify their environmental impacts. Most use remotely sensed
measures of vegetation productivity and isolate the effect of tenure regime. In China, where pasture
individualization has been ongoing since the 1980s, Hou, Liu, and Tian (2022) find that privatiza-
tion with fencing increases grassland productivity; Lu et al. (2023) find that private rights foster
better management than rental; just as improved pasture condition is associated with more formal-
ized access rights on the American plains Buehler (2022). Although the latter study also looked
at the negative spillover effects of tenure individualization on surrounding areas, most studies do
not examine such effects. Studies looking at productivity trends at the landscape level found that
severe degradation in Inner Mongolia coincided with the introduction of private tenure (A. Li,
Wu, and Huang 2012), attributed to rising livestock numbers, fragmentation, loss of mobility and
loss of ability to respond to drought and weather events (W. J. Li, Ali, and Zhang 2007; W. J. Li
and Huntsinger 2011). Conversely, there is evidence that re-aggregation of pasture areas at the
community level (de-privatization) has led to improved pasture productivity, as it re-creates both
economies of scale for movement and the increases area with which livestock are free to move
(Gongbuzeren et al. 2021). Informal institutions which are often an invisible part of the tenure
system can also be very important to management outcomes (D. Li, Hou, and Zuo 2021).
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Central Asia is an important pastoral region, with Kazakhstan alone having one of the largest areas
of rangeland on earth. In 2003, Kazakhstan implemented a set of reforms towards individualiza-
tion of land tenure through private property and long term lease (Robinson, Jamsranjav, and Gillin
2017). The impact of these reforms was found to be poorly effective in promoting improved pro-
ductivity in the case of cropland, owing to restricted land markets preventing land redistribution
after privatization (Kvartiuk and Petrick 2021). Yet effects of tenure on land quality and pasture
productivity have not been conducted. Kazakhstan thus provides an interesting natural experiment
to explore the impact of land reform and of associated spillover effects, on pasture productivity.

In order to address a broad research question regarding the effects of land privatization on pastures
in south-eastern Kazakhstan, we combine detailed parcel geospatial boundaries, their privatization
dynamics over three decades and their remotely sensed characteristics in three districts of Almaty
province in Kazakhstan. Our findings suggest that privatization has not achieved the (presumably)
intended goal of maintenance or improvement of vegetation resources, either on the privatized
plots themselves or on adjacent areas which are affected by negative spillovers and competition for
grazing near settlements.

This is one of the first studies that analyses the effect of land reform and private property on pasture
quality, which in contrast to (H. Li and Zhu 2023; Chari et al. 2021; Hou, Liu, and Tian 2022)
does not find positive effects of land privatization. Instead, we observe strong negative effects
of individualized tenure regimes. These findings question the view that private property regimes
promote rational resource allocation (Deininger and Jin 2005, 2006; H. Li and Zhu 2023).

In the context of Kazakhstan, despite seemingly liberal land institutions, frictions created by vari-
ous restrictions to land exchange practically reduce the reform’s potential, also in crop production
(Kvartiuk and Petrick 2021; Petrick 2021). We contribute to the dialogue on the optimal land
reform design in transitional countries by displaying first insights on pasture management and live-
stock production and discussing limitations and solutions to the restriction of land transfer. Finally,
we present practical application to the ongoing methodological debate on estimating the average
treatment effect on the treated under the staggered research design with absorbing treatment, het-
erogeneous treatment effect, and spatial spillovers. Building on (Xu 2023; Clarke 2017; Butts
2021b) identification, we further identify the spatial spillovers on pastures land, confirming their
importance and in our case additional detrimental effect on vegetation (Masami Kaneko et al. 2009;
Buehler 2022).

The paper is structured in the following way. Chapter 2 discusses land reform in Kazakhstan and
its implementation, concluding with hypotheses about the outcomes of the reform on pasture man-
agement. Chapter 3 briefly describes and summaries data. Chapter 4 presents the identification
of causal effect of land allocation, discusses necessary assumptions and dives into the theoreti-
cal problems of spillovers effect identification. Chapter 5 presents out main findings. Chapter 6
discusses results in the context of land reform in Kazakhstan.
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2 Land reform in Kazakhstan

Land reform in Kazakhstan launched the redistribution of agricultural land from the state to long
term lease or private property (Kvartiuk and Petrick 2021). In the 1990s, following collapse of
livestock inventories, demand for pastures was low. As stock numbers recovered in 2000s, the
new private livestock owners began once again to use more distant pastures (Kerven et al. 2016)
that caused a surge in applications for land titles. These applications are made through a process of
tender for which the winner is decided behind closed doors by a district land commission, (de-jure),
often based on the applicants’ ability to invest (Mukhtarova 2022). The resulting titles are of three
types: short-term (1-5 years) and long-term (49 years) leaseholds; private ownership (an equivalent
of the private property); and permanent land use rights (used to designate land to state-owned legal
entities).

These titles are only applied to the land plots demarcated and registered in the state cadastre. Only
registered individual farms (sharýa qojalyǵy1) or agricultural enterprises are legally able to rent
or own pastures land. Households (non-registered small scale subsistence farms called qosalqy
sharýashylyq2), which hold around 60% of all livestock in Kazakhstan, are not permitted to partic-
ipate in tenders over pastureland, although they may do so as part of cooperatives, (an arrangement
which is rare in the study area). Some pastureland is protected from leasing to individuals and
are formally designated as “common grazing” land for residents, whether households or registered
farms. These common lands are of two major types - village grazing lands, available around all
settlements by law, and remote areas set aside at the discretion of local district authorities. Remain-
ing lands are essentially open access and belong to the state reserves available for further lease or
privatization. We refer to these as ‘never-allocated’.

As pasture privatization proceeded from the late 1990s to 2020s, areas of never-allocated land
decreased, and livestock owners without title were forced to graze on the shrinking not-yet or
never-allocated land and limited common grazing areas, or had to make often informal access
arrangements with leaseholders. This situation may have contributed to heavy use of lands close
to settlements whilst many remote pastures remained little used or even abandoned (Alimaev et
al. 2008; Dara et al. 2020). In between these extremes, accessible and high quality pastures were
increasingly leased or privatized and, in southern Kazakhstan in particular, little accessible land
remains without a designated user.

Despite the seeming transparency of the land reform, there is only a general understanding of its
effects. In the case of cropland, for example, land reform failed to create incentives for efficient
land redistribution, leading to an inefficient land concentration, hampered the credit market de-
velopment and benefited large-scale agricultural enterprises (Kvartiuk and Petrick 2021). Farm
structures, particularly in the northern grain-producing areas, remained dominated by agricultural
enterprises whilst individual farms tended to take niches, specialize in other crops and in the live-
stock sectors (Petrick 2021). The livestock sector is at a crossroads between large commercial
enterprises, which still play a relatively small role, and smaller farms facing numerous constraints,

1Aliased with шаруа қожалығы (in Kazakh cyrillic) or krest’janskoe hozjajstvo (in Russian).
2Aliased with өзіндік қосалқы шаруашылық (in Kazakh cyrillic) lichnoe podsobnoe hozjajstvo (in Russian).
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including the physical, legal and institutional means to access productive pastureland (Robinson,
Bozayeva, Mukhamedova, Djanibekov, and Petrick 2021).

The recent availability of the State cadastre3 opened an opportunity for a more granular analysis
of the impact of formal tenure arrangements at the parcel level, which is the key subject of our
study.

2.1 Study region and observed grazing practices

The region under study includes three eastern districts (audany4) of Almaty region (oblysy5): En-
bekshikazakh (Eñbekşıqazaq), Kegen (Kegen) and Raiymbek (Raiymbek) (described in SectionA.1
in appendixes) . The area hosts a number of vertical transhumance regimes between alpine summer
pastures (zhaĭlau) and remote winter pastures (qystau) on south-facing or other snow-free areas .
Thus, animals, if mobile, can be kept on pastures for much of the year migrating through spring
(kökteu) and autumn (küzeu) pastures . Hayland and arable land are also available for fodder pro-
duction and much of the former is used as autumn pasture after the harvest . We focus our analysis
only on pastures, which occupy more than 75% of the study region and correspond to land cover
classes “pasture” and “pasture on slopes” .

Once parcels on pastures are defined and allocated, they are assigned a land use category, which
include: individual farms, agricultural enterprises, forest, protected areas, common grazing, house-
holds and others6. Land allocation occurs under different legal arrangements which broadly consist
of private ownership and lease (rent) available to individual farms and agricultural enterprises, and
permanent land use applied to all common grazing land, forests and protected areas.

These differences are important for grazing livestock because whilst private ownership enables
owners to freely use, lease7 or sell their land it is only applied to 7% of allocated pastures. 52%
are held under long term leaseholds, when land is still considered as state land, cannot be legally
subleased and is also subject to expropriation if underused or misused (Kazakhstan 2017). Formal
transfer between farmers or back to the state is also difficult and thus numerous informal land
access arrangements exist including subleasing and informal grazing of underused or abandoned
leaseholds (Robinson, Bozayeva, Mukhamedova, Djanibekov, Oshakbayev, et al. 2021; Robinson,
Bozayeva, Mukhamedova, Djanibekov, and Petrick 2021). Overall, the combination of land use
and legal arrangements impose restrictions on the re-distributional capacity of the land market and
have a profound long-term effect on rational land use in Kazakhstan (Kvartiuk and Petrick 2021).

Combining land use categories and legal arrangements constitute key tenure categories on pasture
present in our study region and extensively used in our analysis below. These are:

3Cadastre maps are available according to the article 44-1 of the Land Code (2023) from the following website
https://aisgzk.kz/aisgzk/ru/content/maps/.

4Aliased with rajon.
5Aliased with oblast.
6As households cannot hold individual tenure over pastures, and those are present in the data because of the recording
errors in cadastre in the negligible frequency.

7Such rental transactions are not observed in the cadastre data.
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1. Lands once-allocated (allocated) to users within specific parcels registered in the cadastre:

• Individualized land tenure by individual farms and agricultural enterprises with
land owned or rented from the state under long-term 49 years contracts (Article 37 in
Land Code (2023)). Land ownership represents the best Kazakh analogy of the full
private property or land privatization as such land can be further formally subleased
or sold. Land lease is an individualized form of tenure with restrictions on use and
disposal.

• Common pastures: land allocated by district administrations for common use on (i)
remote pastures (Article 49-2 of the Land Code (2023)) or (ii) around villages (Chapter
11 of the Land Code).

• Forest land allocated permanently to the forest department that leases areas of pasture
to individuals on short term contracts (not recorded in cadastre) without auction.

• Protected areas, are nature reserves or national parks, in which grazing is not permit-
ted.

2. Lands never-allocated (unallocated) lacking delineated parcels registered in the cadastre:

• Never-allocated is also aliased with state reserve, land eligible for allocation to users
through tender or for common use8 in future, but currently open access (Article 35 of
the Land Code (2023)). Essentially this is all land that is not demarcated into specific
parcels. Before land is allocated to users, opportunistic grazing is possible on them.
We refer to this land as not-yet-allocated (before allocation) or never-allocated (un-
allocated as of the end of 2022).

Considering the above tenure categories, we suppose that land allocation is likely to have a rad-
ical effect on pastures use only under some of them. This concerns mainly individual farms and
agricultural enterprises who own land, as they might be more interested in enforcing exclusion by
fencing or monitoring their parcels after allocation, in order to preserve vegetation for their own
flocks. For these land holders, exact allocation date (recorded in the cadastre) implies replacement
of the free-grazing use patterns. For other allocated land, allocation date might be less important
as pre-existing grazing patterns may be simply formalized once land is allocated.

With gradual land allocation and consequent fragmentation of the landscape, the never-allocated
land is becoming less accessible to landless households and individual farmers9. Livestock numbers
in Almaty region have nearly doubled from a low of 4.7 million livestock units in the 1990s to 8
million by 2018, with over half of these animals owned by landless households . As households tend

8Within never-allocated category some lands are in fact formally designated for common use around settlements
(Chapter 11 of the Land Code (2023)). These lands have real boundaries but in most cases they not yet registered
to the cadastre (e.g. in Raiymbek district).

9Pressure on pastures combined with policy change has led some districts to allocate increasing areas of land away
from villages for common use. For example, the cadastral data which we use in this study includes these types
of common remote areas designated by Enbekshikazakh district. In 2020, Kegen and Raiymebek districts have
expropriated leaseholders holding under-used pasture, particularly thosewho leased pasture in high summer areas as
an investment or for hunting or tourism purposes. Whilst some of these areas have been re-allocated to individuals
by tender, others have been increasingly repurposed for common use, meaning that a number of large summer
pastures are now newly available, but remain for the moment little used. These areas did not appear in the cadastre
by December 2022 and are included in our analysis as never-allocated land or allocated land with the legacy tenure.
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to keep their livestock near settlements, livestock density increases on these never-allocated and
common grazing lands, a trend aggravated by the growing exclusion from privatized areas. This
constitutes a spillover effect of privatization, which combined with growing livestock numbers,
may affect pasture condition.

2.2 Hypotheses

Positive effects of land privatization on farms productivity and efficiency are well documented in
the literature (Besley and Ghatak 2010; Deininger and Jin 2006; H. Li and Zhu 2023). Exclusive
property rights promote improved land access not only through incentives to invest in conserva-
tion practices but also through efficient land use reallocation between production units (H. Li and
Zhu 2023). In crop production, efficient land markets (interlinked with credit and insurance mar-
kets) is essential to fully realize the incentive-generating effects of private ownership (Binswanger,
Deininger, and Feder 1995; Deininger and Feder 2001; Sadoulet, Murgai, and Janvry 2001). Ul-
timately, Adamopoulos et al. (2022) suggest that both common and private property are equally
capable to generate allocative efficiency improvement. With respect to the land quality, theoretical
literature is limited and empirical studies derive their expectation from the production economics
(H. Li and Zhu 2023; Hou, Liu, and Tian 2022). Authors conclude that a friction-less land market
with private property and its effortless transfer between users should and empirically does improve
land and pastures quality in various settings. Therefore, combining land reform implementation,
regional context and observed practices, we conclude with a set of hypotheses about land reform
results.

Hypothesis 1 Land allocation improves pastures’ vegetation

On average, we expect to observe a positive effect of land allocation to any type of using entity on
pasture quality.

Hypothesis 2 Land allocation only has an effect under individualized tenure

Substantial land use change occurs only concerning those tenure regimes that create individual
exclusive land use rights or physically reshape the landscape with private property that likely having
stronger effect than individualization through lease similarly to comparable studies elsewhere (H.
Li and Zhu 2023; Hou, Liu, and Tian 2022; Lu et al. 2023). Existing grazing practices on common
grazing, forests, and protected areas tenure regimes are not affected by the act of registration in the
cadastre.

Hypothesis 3 Privatization causes negative spillovers

Landscape fragmentation and frictions in land markets combined with the inability of households
to obtain leaseholds may undermine the migratory grazing systems essential to good pasture man-
agement and inhibit landscape-level management. This leads to a mismatch between stocking rates
and vegetation density affecting both unfenced parcels under individual tenure and remaining freely
accessible lands.
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Hypothesis 4 Effects of privatization increase in proximity to settlements

Village proximity increases competition for grazing land, amplifying the effects of privatization on
allocated plots and negative spillovers. Common land around villages is the most easily accessible
pasture area, both administratively and legally, and particularly for landless households. Using free
remote pastures requires cooperation to pool and heard animals together. Thus, grazing pressure is
highest in the proximity to villages on land under all tenure categories given uncommon fencing.

3 Data description

Our data starts from the land parcels, each with a unique cadastre number, spatial polygons, and
metadata (tenure and allocation date) disseminated through the website of The Department of the
Land Cadastre and Automated Information System of the State Land Cadastre in Kazakhstan (Di-
rectorate of the Land Cadastre in Kazakhstan 2023b). Land parcels were allocated between 1990
and 2022 gradually, by the end of the observation period 25% of pastures in the study region re-
main unallocated in the cadastre. We refer to unallocated parcels as never-allocated and define their
geographic boundaries synthetically (see Section B.2 in appendix for more details).

Each parcel spans different types of land cover (e.g. pastures, pastures on slopes, etc.), which
determines whether a plot can be used for an agricultural purposes such as crop production or
livestock grazing. Land cover maps are disseminated with the cadastre data (Directorate of the
Land Cadastre in Kazakhstan 2023a).

To produce units of analysis, we spatially intersect parcels with the land cover creating discrete
plots (also with repeating land cover) within each parcel. The rationale behindmoving from parcels
to plots as units of analysis is discussed in the Chapter 4. Number of allocated plots exceeds the
number of parcels by 73%, and plots are naturally smaller than parcels, however, there is no dif-
ference between climatic and geographic characteristics of the plots and parcels.

Finally, our data consists of plots on “Pasture” and “Pasture on slopes” (both referred to henceforth
as pastures), with all tenure categories. Never-allocated land is separated into “near” and “remote”
(within and beyond 5 km radius from settlement) to approximately match stratification of the com-
mon grazing land. Besides, we retain “households” and “other” tenure categories to maintain a
complete population of allocated parcels. Figure 1 presents spatial distribution of our plots in the
study regions aggregating ownership and rental tenures of agricultural enterprises and individual
farms for a better representation.

To measure climate and geographic characteristics of the plots we use remote sensing data and
state of the art methodology or aggregating raster data at the polygon level. The pasture quality is
approximated by Normalized Difference Vegetation Index (NDVI), long used for the measurement
of environmental change (Pettorelli et al. 2005). As a tool for measuring the impact of grazing in
particular, NDVI suffers from several limitations including its inability to distinguish forage quality.
However it is a working horse in pastoral range land analysis and has been used in many similar
studies (Eddy et al. 2017; Behnke, Robinson, and Milner-Gulland 2016; Robinson et al. 2016;
Zhumanova et al. 2018; D. Li, Hou, and Zuo 2021; Hou, Liu, and Tian 2022; Buehler 2022). It

8



Figure 1: Plots and their land use on pastures and pastures on slopes
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establishes the common baseline of comparison and has the sensitivity required to detect changes
induced by climate or policy (Zhumanova et al. 2018). Although the exact aggregate of NDVI
differs between geographical contexts, we rely on the annual plot-average of peak NDVI (see also
Section B.2 in appendix) because of the snow cover in winter that distorts annual averages.

Table 1 presents summaries of the annual peak NDVI, geographic characteristics (plot size, el-
evation, slope), and climate variables for our units of analysis in total and by tenure categories.
Monthly climatic data is aggregated over the period from April through August, which is consid-
ered the relevant time frame for the peak biomass.10. When once- and never-allocated plots are
compared, they appear on average similar in their geographic and climatic features, except for the
NDVI, which is significantly lower for never allocated land. When different tenure categories are
compared, we find them similar in their climatic characteristics, however, their geographic features
such as mean size, elevation, and distance to villages appear different. Plos distance to settlements
is also homogeneous for all tenure categories as well as for never allocated land, except for common
grazing land located near to villages.

10We also estimate time-varying monthly cumulative rainfall (millimeter), monthly average surface temperature (de-
gree Celsius), and monthly cumulative solar short wave radiation flux (watt per square meter). Details on spatial
data processing along with the auxiliary descriptive statistics are available in Section B.2 and Section D.4 in ap-
pendix.
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Table 1: Plots characteristics by tenure

Tenure N plots [parcels] Area, 1000 ha Size, ha Elevation, km Slope, degree
Distance to

settlements, km
Peak NDVI

Av. N plots [plot

size] in parcel
(1) (2) (3) (4) (5) (6) (7) (8)

Full sample 23 570 [13 922] 1549.0 65.7 (326.8) 1.84 (0.83) 12.4 (9.0) 12.3 (9.7) 57.9 (21.5) 1.7 [44.7]
Once allocated 15 837 [9 162] 1168.7 73.8 (366.3) 1.86 (0.84) 12.7 (9.1) 12.5 (9.5) 59.2 (21.3) 1.7 [51.5]
Never allocated 7 733 [4 760] 380.3 49.2 (224.0) 1.78 (0.80) 11.2 (8.8) 11.6 (10.1) 53.6 (21.5) 1.6 [31.7]
Ind. farm 10 931 [7 605] 499.3 45.7 (92.6) 1.61 (0.62) 8.9 (6.7) 8.2 (5.6) 53.9 (19.1) 1.4 [46.0]
Ind. farm (own) 1 819 [1 437] 65.3 35.9 (140.4) 1.06 (0.49) 7.4 (6.4) 9.4 (6.5) 49.3 (19.8) 1.3 [27.6]
Ind. farm (rent) 9 112 [6 168] 434.1 47.6 (79.6) 1.69 (0.59) 9.1 (6.8) 8.1 (5.4) 54.7 (18.9) 1.5 [50.3]
Ag. enterprise 1 955 [832] 192.6 98.5 (330.3) 2.05 (1.00) 12.8 (9.1) 17.4 (11.6) 59.6 (20.4) 2.4 [79.0]
Ag. enterprise (own) 292 [170] 17.5 59.9 (205.9) 1.85 (0.89) 10.8 (9.8) 15.3 (11.4) 69.0 (14.6) 1.7 [41.6]
Ag. enterprise (rent) 1 663 [662] 175.1 105.3 (347.2) 2.07 (1.01) 13.0 (9.1) 17.6 (11.6) 58.6 (20.7) 2.5 [88.6]
Common (near) 237 [143] 32.4 136.5 (319.0) 1.04 (0.39) 10.2 (7.3) 2.5 (1.3) 59.7 (19.4) 1.7 [151.6]
Common (remote) 189 [40] 66.2 350.1 (955.0) 1.64 (0.68) 10.8 (8.3) 16.4 (6.7) 45.3 (24.6) 4.7 [416.2]
Forest 1 076 [132] 237.6 220.9 (1087.5) 2.22 (0.85) 18.4 (8.9) 15.2 (9.3) 68.8 (21.3) 8.2 [80.2]
Protected areas 901 [20] 123.7 137.3 (549.3) 2.34 (0.83) 19.7 (8.9) 18.0 (11.5) 69.5 (18.2) 45.0 [190.2]
Household 122 [101] 3.0 24.7 (83.4) 1.13 (0.50) 9.2 (6.8) 8.4 (3.1) 43.5 (15.2) 1.2 [12.9]
Other 426 [295] 13.9 32.7 (247.6) 1.23 (0.99) 6.9 (8.4) 9.8 (7.9) 58.7 (16.9) 1.4 [15.9]
Note: Column ’Tenure’ stratifies samples into the ’Full sample’, subsamples of ’Once allocated’ and ’Never allocated’ land, and subsamples by detailed tenure

categories. The first column reports a number of plots and parcels (in square brackets) under each category. In columns 3 through 7 report means and standard

deviations (in parentheses) weighted by plot size. Column 8 reports the number of plots and average plot size (in square brackets) within the parcel under each

category.
Source: own calculations.

4 Identification strategy

To provide empirical evidence for hypothesis about causal effect of land allocation, we need to
estimate 𝜏 , which is the average treatment effect on treated (ATT). We start with estimating a
benchmark two-ways fixed effect model (TWFE) using the static (BM static) and event-study
(BM) specifications Equation 1, with the individual (𝜂𝑖,⋅) and time (𝜂⋅,𝑡) fixed effects (see Sec-
tion C.3 in appendixes for more details). The vegetation density is a dependent variable approx-
imated by the natural logarithm of the annual maximum of the Normalized Difference Vegetation
Index 𝑌𝑖,𝑡 = log (NDVImax𝑖,𝑡 ). The key variable 𝐷𝑖,𝑡 is an indicator variable11 that is zero, when
land is not-yet- or never-allocated and turns 1 and remains absorbing once parcel 𝑖 is allocated at
time 𝑡. As Equation 1 presents an event-study specification of the problem, it uses year-before-
after-treatment (𝑟) indicator variables 𝑅𝑖,𝑡 (instead of 𝐷𝑖,𝑡) and estimates corresponding coeffi-
cients 𝛾𝑟. Such model is also aliased with a canonical Difference-in-Difference (DiD) setting with
cohort-level treatment and synthetic controls (e.g. Card and Krueger 1994; Abadie 2021). The fact
that plot allocation take place in different periods of time for each parcel makes our research de-
sign staggered, requiring to compensate for the heterogeneous treatment effect problem in detailed
reviewed by (Roth et al. 2023; Baker, Larcker, and Wang 2022)12 .

11Log-level relationship requires accurate interpretation ΔNDVI
Δ𝐷 = 100(1 − 𝑒𝜏)%, which implies that switch of a

plot to a private property causes ΔNDVI
Δ𝐷 percent change in the vegetation density.

12Section C.3 in appendix in details reviews the problem of heterogeneous treatment effect in staggered setting. We
base our identification on (de Chaisemartin and DHaultfoeuille 2020, 2022; Athey and Imbens 2022; Sun and
Abraham 2021; Callaway and Sant’Anna 2021b; Borusyak, Jaravel, and Spiess 2023; Gardner 2022; Goodman-
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𝑌𝑖,𝑡 = 𝜂⋅,𝑡 + 𝜂𝑖,⋅ + 𝛽𝑋𝑖,𝑡 + ∑
𝑟≠−1

1[𝑅𝑖,𝑡 = 𝑟]𝛾𝑟 + 𝜖𝑖,𝑡 (1)

The non random nature of land allocation, creates highly heterogeneous treatment and control
groups calling for a rigorous control for the variance with a number of time-varying remotely
sensed covariates (𝑋𝑖,𝑡) that exploit possible non-linearities in the biological process of vegeta-
tion growth. These controls consist of three groups of variables (84 variables in total) observed
monthly (𝑚) and normalized to the standard normal distribution: monthly cumulative rainfall
RF𝑀,𝑖,𝑡, mean monthly surface temperature TMP𝑀,𝑖,𝑡 , and monthly cumulative short wave ra-
diation flux RAD𝑀,𝑖,𝑡

13.

The units of observation are 23.5 thousand once-allocated and never-allocated land plots 𝑖 with
clearly defined spatial boundaries used for extracting the remotely-sensed data and controlled for
with 𝜂𝑖,⋅ individual fixed effects. The resulting data set is a balanced panel with 560 thousand
observations. Multiple plots may represent a single parcel of a single tenure category if there are
several units non-contiguous of pasture land cover within that parcel. The rationale behind inflating
number of observations by 73% by using plots is in making use of spatial heterogeneity of land. As
a parcel combines land cover types that are distinct in space and have different qualities, their use
might also differ. Thus, individuals, might be willing to enforce exclusion only on some parts of
their parcels, leaving other parts with unchanged land use. Having plots as units of analysis allows
to better control for any endogenous plot characteristics with individual fixed effects minimizing
the OVB. One may still debate that using plots introduces “bad controls” (Cinelli, Forney, and
Pearl 2022). We argue (and show with the robustness checks in Section G.7) that using one of the
other does not make a difference as neither fixed effect (plots or parcels) change with the treatment
qualifying as “good controls” in a classic Angrist’s and Pischke’s (2009, 64) sense.

Never-allocated plots are synthetically constructed based on the remaining unallocated land (see
Section B.2) and they do not reflect potential economically rational boundaries of the parcels that
could be allocated one day in the future. However, they indicate the area where new parcels may be
allocated one day and where the common-property rights around villages are in place over the span
of our analysis. Model respecification by (1) using parcels as unit of observation; (2) weighting
plot-level regressions by plot areas as an approximation of the population weights; (3) varying
sample by excluding never allocated plots; and (4) stratifying sample by tenure categories further
ensures robustness of our estimates.

Validity of the BM estimate of ATT stands on the canonical assumptions of the DiD about parallel
trends and no-anticipation combined with assumptions of the staggered design: treatment effects
homogeneity over time and individuals, and additional parallel trends an no anticipation assump-
tions in detail summarized in Section C.3 in appendix.

Bacon 2021)
13We introduce these three groups of controls as month-specific variables (12 variables per group, 36 regressors in

total). In addition, we add within-month interaction terms between each pair of these variables (additional 36
regressors) as well as interaction between all three variables in eachmonth (additional 12 regressors). In Section F.6
in appendix we conduct sensitivity tests of the functional simplifying and omitting control variables, which do not
affect the estimates of ATT.
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To estimate the ATT of land privatization, we first need to relax the treatment effects homogeneity
assumption, which is a common phenomenon in recent literature (Hou, Liu, and Tian 2022; H. Li
and Zhu 2023). This makes the BM estimate to be inaccurate due to the “negative weights” and
“forbidden comparisons” issues voiced in (de Chaisemartin and DHaultfoeuille 2020; Goodman-
Bacon 2021)14.

Below, we utilize the Callaway and Sant’Anna (CS) (Callaway and Sant’Anna 2021b), Sun and
Abraham (SA) (Sun and Abraham 2021), and the Gardner’s imputation (IMP) (Gardner 2022)
estimators in their default event-study specification. As the CS estimator permits choosing relevant
counterfactual groups for estimating the ATT, we use both: not-yet-treated “CS (NYT)” and never-
treated “CS (NT)”.

The treatment effect may be heterogeneous based on some measurable characteristics relevant to
each plot. For example, competition for land creates a greater burden on pastures in proximity to
the livestock holding facilities: villages. Besides, the type of land use may lead to different effects
of land allocation as well as different tenure types. Therefore, we stratify the sample by village
proximity, land use, and tenure types in combination with the heterogeneity robust estimators to
infer accurate estimates of ATT. The parallel trends in staggered design is another assumption
that can only be justified loosely. We employ the event-study specification (Equation 1) with all
estimators. This allows testing for pre-treatment trends and relaxes the parallel trends in the post-
treatment period, exploring post-treatment variation in the treatment effect sizes. The assumption
of no anticipation is fulfilled for individualized tenure; however, for land where land-use does not
change as a result of allocation, no effect is expected.

4.1 Spillover effects identification

Finally, spatial spillover effects are probably the key challenge in our setting given detailed parcel-
level data. Most of the not-yet- and some never-allocated plots (which are also not not-yet allo-
cated common pastures) are used for grazing based on free access. Besides, exclusion is weak on
allocated plots as fencing is rare. Therefore, privatization of large parcels by individuals holding
disproportionately lower numbers of livestock and partial exclusion on some parcels might increase
grazing intensity on the not-yet- or never-allocated as well some allocated land. This might be re-
garded as a combination of the parallel trend assumption violation with the spillover effect (Butts
2021b).

To identify the spillover effects, we assume that 𝜏 from Equation 1 is an unbiased estimate of the
ATT if the stable unit treatment value assumption or SUTVA holds. Imbens and Rubin (2015)
formulate SUTVA as: “the potential outcomes for any unit do not vary with the treatments assigned
to other units …”. In the context of the staggered design DiD, SUTVA means that there are no
interference or spillover effects from other treated individuals (Xu 2023; Clarke 2017; Butts 2021b;
Aronow and Samii 2017). Conversely, once SUTVA is violated, no matter which DiD estimator
we use, unknown interference makes our estimates of ATT biased not only in the magnitude but
also in the sign ( ̃𝜏 ) even under random assignment of the treatment (Sävje, Aronow, and Hudgens

14To test the extent of this heterogeneity, in Section E.5 in appendixes, we decompose the weights of the “BM static”
estimate following both de Chaisemartin and DHaultfoeuille (2020) and Goodman-Bacon (2021).
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2021; Berg, Reisinger, and Streitz 2021). Despite extensive attention in the randomized experiment
settings (Sävje, Aronow, and Hudgens 2021; Aronow and Samii 2017; Vazquez-Bare 2022) and
natural sciences (Halloran and Hudgens 2016), spillover effects had only limited attention in the
social sciences (Manski 1993), DiD literature (Di Tella and Schargrodsky 2004; Clarke 2017; Berg,
Reisinger, and Streitz 2021; Xu 2023) and none (except for Butts (2021b) pre-print) in the literature
on staggered design with heterogeneous treatment effects.

Following a model-based identification (Butts 2021b; Berg, Reisinger, and Streitz 2021) and
design-based approach (Xu 2023) conclude that spillovers from treated units are of two kinds: on
controls (𝜏 s. control ) and on treated (𝜏 s. treated). The first occurs, when the effect of a treatment
“spills” onto the “neighboring” control groups affecting the factual outcomes of no treatment.
The latter occurs, when treated nearby groups indirectly affect the magnitude of treatment in the
other treated groups. This makes both, counterfactuals and factual invalid. In the canonical DiD
setting counterfactuals are untreated individuals. In the staggered design, different counterfactuals
are used in clean and forbidden comparisons. Therefore, 𝜏 s. treated as much as 𝜏 s. control affects the
validity of our controls and the ATT estimates.

To separate these two spillover effects from the ATT in the potential outcome framework, we first
need to relax SUTVA15.

Let us assume that potential outcome of a treatment applied to the unit 𝑖 not only depends
on the treatment status 𝐷𝑖, but also on the treatment statuses of the neighboring units
z−i. z = (𝑧1, 𝑧2, ..., 𝑧𝑛) ∈ {0, 1}𝑛 is the 𝑛-dimensional vector of all unit treatments,
(z−i = (𝑧1, 𝑧2, ..., 𝑧𝑖−1, 𝑧𝑖+1, ..., 𝑧𝑛) excludes unit 𝑖). All units are spatially scattered on different
distances from the treated unit 𝑖. Units 𝑖 exposure to the spillovers from all other units z−i can be
differentiated based on the “exposure map” ℎ(⋅) that takes strictly positive values. Then, potential
outcome of a treatment applied to unit 𝑖 can be written as 𝑌𝑖,𝑡(𝐷𝑖, ℎ(z−i)), which reduces to
𝑌𝑖,𝑡(𝐷𝑖) (used in Equation 4), when ℎ(z−i) = 0.
When ℎ(z−i) ≠ 0, we observe an individual treatment effect with spillovers 𝜏 spillovers𝑖 is composed
of three treatment effects at once:

𝜏 spillovers𝑖 ≡ 𝑌𝑖,2(1, ℎ(z−i)) − 𝑌𝑖,2(0, ℎ(z−i))
≡ 𝑌𝑖,2(1, ℎ(z−i)) − 𝑌𝑖,2(0, 0) − {𝑌𝑖,2(0, ℎ(z−i)) − 𝑌𝑖,2(0, 0)}
≡ 𝑌𝑖,2(1, 0) − 𝑌𝑖,2(0, 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜏direct
𝑖

+ 𝑌𝑖,2(1, ℎ(z−i)) − 𝑌𝑖,2(1, 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜏 s. treated

𝑖

− {𝑌𝑖,2(0, ℎ(z−i)) − 𝑌𝑖,2(0, 0)}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜏 s. control

𝑖

(2)

15Below, we present the potential outcomes framework that corresponds to our notations used in Section C.3 and
follows (Clarke 2017; Butts 2021b; Xu 2023) in a rather simplified manner. To have a rigorous overview of
spillovers identification, see also (Aronow and Samii 2017; Sävje, Aronow, and Hudgens 2021; Vazquez-Bare
2022).
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For estimating the ATT that excludes spillovers (𝜏 direct), Equation 2 can be rewritten in as an average
of individual treatment effects16. Under SUTVA 𝜏 spillovers = 𝜏 direct = 𝜏 as 𝜏 s. control and 𝜏 s. treatment
cancel out. However, when our goal is to estimate the ATTwithout spillovers (𝜏 direct) under relaxed
SUTVA, omitting spillover variables as in Equation 1 results with ̃𝜏 = 𝜏 spillovers, or a biased estimate
of ATT (Berg, Reisinger, and Streitz 2021).

From a policy-perspective, we might not only be interested in the ATT (𝜏 direct), but also in the
effects of spillovers 𝜏 s. treated and 𝜏 s. control. Recent literature, however, provides as rather limited
approaches for estimating these effects. It is essentially narrowed to the traditional regression con-
trol strategies (Di Tella and Schargrodsky 2004; Clarke 2017; Butts 2021b; Berg, Reisinger, and
Streitz 2021) in the canonical DiD setting with cohorts of treated and untreated units.

Initially, (Manski 1993) proposes a regression model that can account for the spillover effects be-
tween units in a spatial context. (Clarke 2017; Butts 2021b; Xu 2023) prove that an amended
canonical DiD TWFE model can accurately capture spillover effects represented as a set of binary
variables (whether or not each neighboring unit is treated). (Berg, Reisinger, and Streitz 2021) pro-
vides the Omitted Variable Bias (OVB) rationale that necessitates including spillover variables into
the DiD TWFE model and show that spillover effects can be estimated consistently when they are
encoded as continuous variable17 (ranging between 0 and 1, share of neighboring units treated).

Spatial nature of interactions between units sometimes requires to introduce not one, but multiple
(z−i) others’ units treatment statuses that are spilled on the unit 𝑖. This leads to the large dimen-
sionality problem that requires reduction. Xu (2023) overviews key methods such as clustering
neighbors by socio-economic characteristics with similar spillover effect, utilizing nearest neigh-
bors, or spatially aggregating units based on their distance to 𝑖. The author concludes that although
it is important to specify the spillovers accurately, their misspecification could be to some extent
compensated by the proposed estimation method. In practice, authors use spatial configuration
approaches by introducing distance bins (rings) 𝑗 = (1, 2, ..., 𝑝) around each unit 𝑖 (Clarke 2017;
Butts 2021b). Binary (or continuous from 0 to 1) variables 𝑆𝑖,𝑡,𝑗 is then added to indicate if rela-
tive to the unit 𝑖 at time 𝑡 a treatment is applied to another unit(s) in the distance bin 𝑗. Distance
bins could be decided arbitrary and should be mutually exclusive to provide an unbiased estimates
of the spillover. Non-parametric cross-validation methods exist to create the bins as well (Clarke
2017).

The average effect of spillovers on the treated is the average of the bin-specific estimates weighted
by the relative frequency of certain bins ( 𝜔⋅

𝑗 ) in the data ( ̄𝜏 ⋅ = ∑𝑝
𝑗=1 𝜏 ⋅

𝑗𝜔⋅
𝑗/ ∑𝑝

𝑗=1 𝜔⋅
𝑗) with the

16Average of individual treatment effects:

𝜏 spillovers ≡ 𝐸 [𝜏direct
𝑖 + 𝜏 s. treated

𝑖 − 𝜏 s. control
𝑖 |𝐷𝑖 = 1, ℎ(z−i) ≠ 0]

≡ 𝜏direct + 𝜏 s. treated − 𝜏 s. control

17Identification of spillover effects encoded with continuous variables is often ignored. Most theoretical proofs are
concerned about binary spillover variables, while (Berg, Reisinger, and Streitz 2021), uses a continuous zero to one
variables without discussion potential pitfalls. We, however, assume that it is relatively safe to specify spillovers
as a non-binary (continuous) variable, leaving its theoretical justification for future exploration.
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delta method based standard errors. Resulting DiD TWFE model with dynamic (static18) treatment
effect that can capture spillover effects could be written as Equation 3.

In the canonical DiD setting, Equation 3 can be estimated using conventional TWFE model. Es-
timands ̂𝜏 direct, ̂𝜏 s. treatment𝑗 , and ̂𝜏 s. control𝑗 are valid when assumption of canonical DiD are satisfied
alone with additional spillover-related assumptions: the parallel trends in treatment and control
development under spillovers and independent of them (Assumption 4, 6 in Butts (2021b) or As-
sumption 3 in Xu (2023)); the ‘local’ spillovers assumption (Assumption 5 in Butts (2021b) and
Xu (2023)); and the parallel trends in spillover effects (Assumption 7 in Butts (2021b)).

𝑌𝑖,𝑡 = 𝜂⋅,𝑡 + 𝜂𝑖,⋅

+ ∑
𝑞<−1

1[𝑅𝑖,𝑡 = 𝑞]𝛿𝑞 +
𝜏direct

⏞⏞⏞⏞⏞⏞⏞∑
𝑟≥0

1[𝑅𝑖,𝑡 = 𝑟]𝛾𝑟

+
𝑝

∑
𝑗=1

𝜏 s. treated𝑗 𝐷𝑖,𝑡𝑆𝑖,𝑡,𝑗 +
𝑝

∑
𝑗=1

𝜏 s. control𝑗 (1 − 𝐷𝑖,𝑡)𝑆𝑖,𝑡,𝑗

+ 𝛽𝑋𝑖,𝑡 + 𝜖𝑖,𝑡

(3)

Ultimately, to account for the presence of spillovers, we explicitly estimate the model with
spillovers Equation 3. As the variable that indicates spillover 𝑆𝑖,𝑡,𝑗 we use the share of land area
allocated (without discriminating between tenure categories) in the radius bin 𝑗 around plot 𝑖 at
time 𝑡. The variable 𝑆𝑖,𝑡,𝑗 is a ratio variable that ranges between 0 and 1 in each 5, 10, 15, and 30
km “rings” relative to each plot 𝑖 (see Section B.2.6 in appendix). As spillover effects magnitude
may vary based on the distance to villages or tenure, we combine spillover model specification
with other sample stratification approaches discussed above.

5 Results

5.1 ATT of land privatization

Table 2 presents the main results of our analysis estimated on the full sample (Panel A) and one
excluding synthetic never-allocated plots (Panel B). It shows the estimates of the average treatment
effect on the treated (ATT) from land allocation on pastures’ vegetation employing all the above-
discussed estimators. The resulting estimates are robustly negative with the ATT ranging from

18Static TWFE mode with spillover effects:

𝑌𝑖,𝑡 = 𝜂⋅,𝑡 + 𝜂𝑖,⋅

+ 𝜏direct𝐷𝑖,𝑡 +
𝑝

∑
𝑗=1

𝜏 s. treated
𝑗 𝐷𝑖,𝑡𝑆𝑖,𝑡,𝑗 +

𝑝
∑
𝑗=1

𝜏 s. control
𝑗 (1 − 𝐷𝑖,𝑡)𝑆𝑖,𝑡,𝑗

+ 𝛽𝑋𝑖,𝑡 + 𝜖𝑖,𝑡
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0.2% to 1.7% decrease in peak vegetation density. Similar results are evident from the even study
(Figure G1 based on Panel A, and Figure G2 based on Panel B). The main results hold robustly
against functional form specification presented in Section G.7 of the appendix. These include the
plot-level linear trend inclusion to compensate for the natural rate of soil degradation, weighting
by the plot size and varying sample by certainty of allocation date, or aggregating over periods
before-after.

The ATT is small, therefore, its economic meaning has to be interpreted in comparison with other
covariates. Section G.7 in the appendix presents estimates of the main ATT along with the se-
lected variables controlling for rainfall and temperature in May-July (the months most important
for peak vegetation accumulation). As each control variable in Equation 1 is normalized to a stan-
dard normal distribution, the effect of ATT could be compared with weather anomalies such as
drought or excessive heat. Our estimates show that rainfall anomalies in June that decrease more
than ±1𝜎 from the historical monthly level (happens with respective probability ≈ 16%) reduces
peak vegetation by 0.8-1.2%. Rainfall that exceeds historical levels by 1𝜎 in July instead reduces
peak vegetation by 0.5-1.1%. Therefore, the effect of land allocation is comparable with negative
weather anomalies that occur one to two times in a decade, thereby it is profound and detrimental
providing solid evidence for rejecting our Hypothesis 1.

Land allocation to agricultural enterprises has a more ambiguous effect, which change once we
exclude never-allocated counterfactuals from the sample (Panel B) or vary the estimator. This
signifies treatment effect heterogeneity that is observed within agricultural enterprises and the sen-
sitivity of heteroscedasticity-robust estimators in capturing the ATT.

Table 2: Key estimates of the ATT

BM static BM SA CS (NT) CS (NYT) IMP static IMP

Panel A. Full sample

ATT
-0.0024***

(0.0006)

-0.0030**

(0.0009)

-0.0035***

(0.0010)

-0.0013

(0.0009)

-0.0020*

(0.0009)

-0.0050***

(0.0010)

-0.0034***

(0.0007)

N obs. 565,680 565,680 565,679 565,679 565,679 534,216 534,216

N ind. FE 23,570 23,570 23,570 23,570 23,570 22,259 22,259

Within R sq. adj. 21.0 21.1 21.6

Panel B. Excluding never-allocated land

ATT
-0.0031***

(0.0006)

-0.0025*

(0.0013)

-0.0048***

(0.0013)

-0.0013

(0.0013)

-0.0132***

(0.0022)

-0.0173***

(0.0030)

N obs. 380,088 380,088 380,087 380,087 334,098 334,098

N ind. FE 15,837 15,837 15,837 15,837 13,921 13,921

Within R sq. adj. 21.5 21.6 22.4

Note: Row ’ATT’ reports the average treatment effect on the treated and its heteroscedasticity robust standard errors clustered at plot level in

parentheses. In models BM, SA, CS, and IMP, the ATT is computed as a weighted average of individual estimates for periods 0 to 23 after land

allocation, with delta-method-based standard errors. In the CS estimator ’NT’ stands for never treated and ’NYT’ for not yet treated groups of

counterfactuals. The never-treated (NT) group consists of the synthetic never-allocated plots, which are excluded from the sample in Panel B.

Statistical significance levels are: ‘***’ p-value < 0.001, ‘**’ p-value < 0.01, ‘*’ p-value < 0.05, p-value < ‘.’ 0.1, and ‘ ’ p-value >= 0.1.

Source: own calculations.
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ATT estimates for other tenure categories, where allocation does not imply a change in the land use
practices are reported in appendixes Table H1 (Section H.8). There, results are inconclusive and
sensitive to the sample used and the estimator. For example, one may find the effect of common
grazing tenure significant and positive with the corresponding event study (Figure H2) indicating
the same effect only with 6 and 7 years lag and no effect otherwise. The dynamics of land allocation
to common grazing (Table A2) suggests that only 2 parcels (out of 143) were allocated before 2017
(6 and more years before the end of the observation period), while the bulk of allocation took
place in 2020-2022. This highlights how misleading the results of ATT estimates could be when
treatment occurs irregularly. Concerning other tenure categories, no actual change in land use as a
result of land allocation is probably the key cause behind the unstable ATT estimate.

Table 3: ATT by tenure with a sharp change in the land use

Estimator
Ind. farm

(all)

Ind. farm

(own)

Ind. farm

(rent)

Ag. ent.

(all)

Ag. ent.

(own)

Ag. ent.

(rent)

Panel A. Full sample

BM static -0.0046*** -0.0028. -0.0049*** 0.0048** 0.0119** 0.0034*

BM -0.0044*** -0.0036. -0.0048*** 0.0080*** 0.0112* 0.0071**

SA -0.0054*** -0.0025 -0.0060*** 0.0059** 0.0141** 0.0042.

IMP static -0.0067*** -0.0026 -0.0068*** 0.0029 0.0167*** 0.0000

IMP -0.0028*** -0.0003 -0.0024* 0.0005* 0.0003*** 0.0002

N obs. 447,936 229,248 404,280 232,512 192,600 225,504

N ind. FE 18,664 9,552 16,845 9,688 8,025 9,396

Panel B. Excl. never-allocated

BM static -0.0039*** -0.0105*** -0.0034*** 0.0035. -0.0014 0.0037.

BM -0.0043** -0.0047 -0.0229** 0.0083** -0.0124 0.0082.

SA -0.0065*** -0.0241 -0.0071*** 0.0074 -0.0016 0.0045

IMP static -0.0125*** -0.0223*** -0.0068** -0.0053* -0.0077 -0.0064*

IMP -0.0164*** -0.0305*** -0.0078* -0.0063* -0.0117. -0.0072*

N obs. 262,344 43,656 218,688 46,920 7,008 39,912

N ind. FE 10,931 1,819 9,112 1,955 292 1,663

Note: This table reports estimates of ’ATT’ derived with key estimators based on subsamples of plots by tenure and subsamples with (Panel

A), and without (Panel B.) never-allocated land. Rows ’N obs.’ and ’N of FE’ report the number of observations and fixed effects for each

sample which is the same for each estimator in the same column. Heteroscedasticity robust standard errors clustered at plot level are used to

estimate significance levels but not reported

Statistical significance levels are: ‘***’ p-value < 0.001, ‘**’ p-value < 0.01, ‘*’ p-value < 0.05, p-value < ‘.’ 0.1, and ‘ ’ p-value >= 0.1.

Source: own calculations.

Pastures under individualized land tenure undergo a sharp change in the land use practices after the
land is allocated and those systematically affect pasture quality. However, the mechanisms behind
change in the land use are slightly different. For individual farms, land ownership that is associated
with more extensive rights to re-distribute land use between individuals creates incentives for a
more rational land use than simple land rental. While renting on a long-term basis may incentivize
users to do the opposite and misuse the land either overgrazing it or simply avoiding managing
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it rationally. This highlights the key flaw of the land reform in creating efficient institutions for
private property distribution that harms pastureland.

These conclusions confirm ourHypothesis 2 about different incentives that the land reform created
for pasture use under individualized tenures. They also signify the harmful role of segregating land
institutions that prevent pasture exchange between different tenures and ownership types.

5.2 Spillover effects

Table 4 presents estimates of the ATT and spillover effects derived with the heterogeneity robust
estimators using the full sample (Panel A) and excluding never-allocated land (Panel B). We only
shows aggregated spillover effects on treated “Spillover on allocated” and on control “Spillover
on unallocated”, however, in the regression model, we specify spillovers by thresholds of 5, 10,
15, and 30 km, to identify spillover bins (𝑗 from Equation 3). The results indicate that the ATT of
land allocation is still negative and significant with a magnitude that is similar to the model without
spillovers. However, spillover effects are themselves pronounced and negative with the comparable
to the ATT magnitude. Specifically, allocation of all land around an allocated or unallocated plot
reduces the peak vegetation of the plot under investigation by another 0.2-1% aggravating the total
effect of land allocation. Omitting spillovers from the regression causes an upward bias of our
estimates 𝜏 s. treated𝑗 − 𝜏 s. control𝑗 > 0 because spillover effects on unallocated (control) are lower
than that on allocated (treated) and both are negative 𝜏 s. control < 𝜏 s. treated𝑗 based on the SA model.
Section I.9 in appendixes also pretenses the event-study for the model with spillover effects. Using
different estimators result slightly different results, which might relate to the strings of identifying
assumptions different between the estimators. Specifically, imputation estimators are tuned better
for the ATT, while the SA may be better capturing all spectrum of effects.

Table 4: ATT and spillover effects by distance to village

BM static BM SA IMP static IMP

Panel A. Full sample

ATT -0.0024* -0.0085*** -0.0081*** -0.0032. -0.0006

Spillover on allocated -0.0092*** -0.0098*** -0.0101*** -0.0015*** -0.0024***

Spillover on unallocated -0.0094*** -0.0109*** -0.0113*** -0.0013*** -0.0028***

N obs. 565,680 565,680 565,679 534,216 534,216

N ind. FE 23,570 23,570 23,570 22,259 22,259

Panel B. Excl. never-allocated

ATT 0.0003 -0.0041** -0.0080*** 0.0076. 0.0049

Spillover on allocated -0.0093*** -0.0104*** -0.0114*** -0.0103*** -0.0094***

Spillover on unallocated -0.0083*** -0.0119*** -0.0139*** -0.0060*** -0.0054***

N obs. 380,088 380,088 380,087 334,098 334,098

N ind. FE 15,837 15,837 15,837 13,921 13,921

Note: Row ’ATT’ reports the average treatment effect on the treated. Rows ’Spillovert on allocated’ and ’Spillover on

unallocated’ report the magnitude of corresponding spillover effects originating from allocation of the plots in the

neighborhood of the unit of analysis. Heteroscedasticity robust standard errors clustered at plot level are used but not

reported.
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BM static BM SA IMP static IMP

Statistical significance levels are: ‘***’ p-value < 0.001, ‘**’ p-value < 0.01, ‘*’ p-value < 0.05, p-value < ‘.’ 0.1, and

‘ ’ p-value >= 0.1.

Source: own calculations.

Spillover effects differentiate by tenure regimes similarly to the ATT. Table 5 displays results esti-
mated with the SA estimator for selected tenure categories with the sharp land use change due to
spillovers, while Section I.9 in appendices shows it for the other tenure categories. Land allocation
into ownership under individual farms is associated with a 4% reduction in pasture quality if we
account for the spillover effects, which are also negative and significant. At the same time, effect of
land allocation is zero, once we account for the spillovers in the ag-enterprises land tenure. Results
for the other tenure categories are less conclusive.

Table 5: ATT and spillover effects by key tenure categories

Ind. farm

(all)

Ind. farm

(own)

Ind. farm

(rent)

Ag. ent.

(all)

Ag. ent.

(own)

Ag. ent.

(rent)

Panel A. Full sample

ATT -0.0118*** -0.0399*** -0.0106*** 0.0210 0.0167 0.0204

Spillover on allocated -0.0092*** -0.0062*** -0.0111*** -0.0078*** -0.0075*** -0.0078***

Spillover on unallocated -0.0108*** -0.0081*** -0.0124*** -0.0076*** -0.0074*** -0.0076***

N obs. 489,383 230,950 444,023 202,583 188,088 200,087

N ind. FE 20,391 9,623 18,501 8,441 7,837 8,337

Panel B. Excl. never-allocated

ATT -0.0163*** -0.0408* -0.0153*** 0.0343* 0.0294. 0.0455.

Spillover on allocated -0.0112*** -0.0038 -0.0152*** -0.0190** -0.0204* 0.0041

Spillover on unallocated -0.0186*** -0.0126* -0.0223*** -0.0086 -0.0126 0.0256

N obs. 303,791 45,358 258,431 16,991 14,495 2,496

N ind. FE 12,658 1,890 10,768 708 604 104

Note: The table reports results estimated using the SA estimator. Row ’ATT’ reports the average treatment effect on the treated. Rows

’Spill on allocated’ and ’Spill on unallocated’ report the magnitude of corresponding spillover effects. Rows ’N obs.’ and ’N of FE’

report the number of observations and fixed effects for each sub-sample. Heteroscedasticity robust standard errors clustered at plot level

are in parentheses.

Statistical significance levels are: ‘***’ p-value < 0.001, ‘**’ p-value < 0.01, ‘*’ p-value < 0.05, p-value < ‘.’ 0.1, and ‘ ’ p-value >= 0.1.

Source: own calculations.

Finally, the spillover effects andATT aremore pronounced in proximity to villages and reducewhen
we move away from settlements (Table 6). For example, in the 2 and 5km proximity to villages, the
ATT for all tenure categories varied between 1.1% and 1.7% reduction in the vegetation, while the
spillover effects further added 1% to 1.7% in reduction of the vegetation. Moving beyond 10km
from villages, only the ATT is significant in the range from 0.8% to 1.9%, whilst spillover effects
are near to zero.

Different effects of land allocation and spillover by tenure categories once again confirm differ-
ent land use patterns observed in the study region. From the fact that spillover effects on never-
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allocated land are strong and negative, we infer that landless herders and other livestock producers
in the region do keep their livestock on the free land and its increasing scarcity causes livestock re-
distribution to the not-yet allocated land. This is a first confirmation of Hypothesis 3, which holds
concerning both individualized and not individualized land tenures. Besides, individuals who have
access to land under ownership or rent are still using the opportunities to graze on the free un-
fenced land. Therefore, we observe a strong negative effect of spillovers on allocated plots under
all tenure categories. Nevertheless, spillovers on unallocated land are larger than that on allocated,
suggesting that to some extent exclusion is taking place in selected tenure categories, especially
in the proximity to villages. Considering individualized land tenure, such landowners may still
use free land, if available, and slowly redistribute onto their land, as the neighborhood becomes
increasingly allocated.

Table 6: ATT and spillover effects by distance to settlements

2 km 2-5 km 5 km 5-10 km 10-more km

Panel A. Full sample

ATT -0.0171*** -0.0079* -0.0124*** -0.0057. 0.0083*

Spillover on allocated -0.0138*** -0.0126*** -0.0113*** -0.0173*** 0.0008

Spillover on unallocated -0.0172*** -0.0140*** -0.0135*** -0.0183*** 0.0034.

N obs. 110,399 153,551 263,951 155,399 146,327

Panel B. Excl. never-allocated

ATT -0.0147* -0.0117* -0.0144*** -0.0133*** 0.0191***

Spillover on allocated -0.0097** -0.0169*** -0.0118*** -0.0199*** 0.0007

Spillover on unallocated -0.0154** -0.0218*** -0.0172*** -0.0268*** 0.0068*

N obs. 65,831 105,695 171,527 110,231 98,327

Note: The table reports results estimated using the SA estimator. Row ’ATT’ reports the average treatment effect on

the treated. Rows ’Spill on allocated’ and ’Spill on unallocated’ report the magnitude of corresponding spillover

effects. Rows ’N obs.’ and ’N of FE’ report the number of observations and fixed effects for each sub-sample.

Heteroscedasticity robust standard errors clustered at plot level are in parentheses.

Statistical significance levels are: ‘***’ p-value < 0.001, ‘**’ p-value < 0.01, ‘*’ p-value < 0.05, p-value < ‘.’ 0.1, and

‘ ’ p-value >= 0.1.

Source: own calculations.

Including spillovers into the tenure-specific analysis uncovers harsh realities that a constraining
land policy creates for individual land owners. Owning or (renting the land) may lead them to
graze more heavily at those locations, causing a substantial reduction of the vegetation quality.
This signifies the mismatch between the livestock holding and land allocation that occurred in the
course of the last three decades and indicates that current institutions are failing to address this by
creating land re-distributive capacities.

The ATT diminishing to zero and only mild spillover effects on unallocated land that are observed
when we move away from the settlements confirmsHypothesis 4. This is likely to be connected to
the grazing patterns that dominate the region, where using remote pastures is only possible when
dedicated herders temporarily settle in those remote areas. As such migration is associated with
substantial fixed costs, and livestock densities at those locations tend to be lower overall.
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6 Conclusions

Our paper analyses the effect of land allocation (registration in the cadaster) on pasture quality
in southern Kazakhstan. It is based on the unique natural experiment that emerged during Kaza-
khstan’s transition from a planned economy to the market, when over three decades, state-owned
land has been gradually distributed between various users under distinct tenure regimes. Land re-
distribution occurred through land reforms recognizing leasehold and private property rights on
land, combined with the introduction of a modern cadaster. By 2022, 75% of pastures were dis-
tributed under such tenures regimes as permanent allocation to state agencies and common grazing
by resident livestock owners, and individualized tenure by “individuals”: agricultural enterprises
and individual farms, on whom our analysis is focused in particular. Land reform enabled individu-
als to access land either through private ownership or (more commonly) through 49-year long-term
leasehold from the state. We combined cadastral data with remotely sensed climatic and geographic
characteristics, and plot vegetation density approximated with the average of the annual peak of
the Normalized Difference Vegetation Index (NDVI) to ultimately understand how the land reform
was implemented and what causal effect it had on pastures quality.

Our analysis shows that the act of land allocation causes on average a reduction in vegetation
density equivalent to that under a mild drought that occurs once in 6 years. These results fail to
confirm our hypothesis 1, which predicted an opposite outcome. We suspect that negative effects
of privatization are caused by lack of land redistribution after allocation on the markets and weak
enforcement of exclusion. These finding contradicts the expectations entrusted to the privatized
landmarket (Binswanger, Deininger, and Feder 1995; Deininger and Feder 2001; Sadoulet, Murgai,
and Janvry 2001; Holden and Otsuka 2014) and also observations made in rangelands in China and
the USA (Buehler 2022; Hou, Liu, and Tian 2022; H. Li and Zhu 2023), where land redistribution
through rental is usually possible after privatization.

Sample stratification by tenure confirms our expectations posited in hypothesis 2 about different
land use practices linked to the tenures. Specifically, individualized land tenure implies a sharp
change in the land use practices, immediately observed in the vegetation change. Such are findings
for the individual farmers, who should be most incentivized to improve pasture management once
securing tenure through ownership or even leasehold. It is surprising to observe that such producers
tend to overgraze their pasture causing vegetation density to decline by up to 4% (equivalent to a
drought that occurs once in 25 years). For tenures under common grazing, forests and protected
areas, the act of registration only records already existing land use practices, therefore, we only
observe spurious relationship between allocation and vegetation, which do not hold robustly.

The use of plot-level data permitted the estimation of spatial spillover effects, which we predicted
would be negative (hypothesis 3). Although the idea of spatial spillovers is not new and their
presence in pasture management has been occasionally discussed in the literature (Buehler 2022;
Masami Kaneko et al. 2009), we show how detrimental their effect on allocated plots is when ex-
clusion is weak and plot fencing does not take place after allocation. In most tenures categories,
where no sharp change in land use takes place after allocation, spillovers from the allocation of the
neighboring plots are the main cause of vegetation decline. Spillovers are of two kinds: from allo-
cation of land in the neighborhood on unallocated and allocated plots. The latter spillover effect is
stably smaller in magnitude than the first one. That indicates that partial exclusion does take place
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with land allocation, however, the rarity of fencing does not render spillover effects on allocated
land to zero. Finally, as mainly landless households keep their livestock near to villages, the neg-
ative effect of land allocation and spillovers is stronger in the proximity to settlements (hypothesis
4) and reduces to zero at distances beyond which resident livestock are unlikely to move.

The response of vegetation to land allocation and additional negative spillover effects suggest that
the intended results of land titling and privatization, in terms of improved pasture management,
have not been realized. This may result from a combination of the poor institutional design that
prevents land exchange (Kvartiuk and Petrick 2021) and ecosystem fragmentation created by in-
dividual titling (Behnke 2018). With the gradual recovery of the livestock numbers in the 2010s,
livestock owners need to revive the migration grazing system that broke down in the 1990s follow-
ing the restructuring of collective farms and a collapse in livestock numbers, as it allows livestock
to capture the best forage at different times of the year. However, the fragmented landscape and
high transaction costs of accessing pasture erect constraints to mobile grazing patterns.

We see two potential solutions to this problem. The first lies in the creation of a fully liberalized land
market, allowing both sub-leasing and simplified lease transfer between producers that includes
households. Such a practice of nondiscriminatory land use is being implemented in Ukraine. The
second facilitates local collective action, to allocate much larger areas of common grazing land for
regulated common use by households and farms with poor pasture access. The introduction of large
commonly managed areas of pasture would reverse the fragmentation of pasture systems, allowing
management at the landscape scale.
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A.1 Description of the study region

Figure A1: Administrative division of the study region

We focus on three districts of the Almaty Region Figure A1. Each district is further subdivided
into sub-districts, which are used for cadastre accounting purposes. Historically sub-districts were
created based on the legacy cadastre division that was used to distribute agricultural land between
large-scale collective and state agricultural enterprises (Kolkhoz and Sovkhoz). Some sub-districts
currently exist to represent specific roads or infrastructural objects, which we take into considera-
tion when we create polygons of our units of analysis.
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Figure A2: Land cover types in the study area

The geographic boundaries of the land cover describe classes of land that cover the surface. Initially,
the cadastre map disseminates extremely detailed land cover categories, which we aggregate into
a shorter list of land cover categories displayed on Figure A2. A complete mapping table could
be provided on request. The land cover classes describe the possibility of using land for various
agricultural purposes, such as grazing on pastures and crop production on the cropland. However,
land cover categories are not restrictive according to the Land Code (2023), therefore, occasional
grazing on arable land is possible, although unlikely. Pastures are represented by two broad land
cover classes namely, pastures and pastures on slopes. They differ in geographical characteristics
and, therefore, quality of vegetation, however, they are used for grazing without discrimination.
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Figure A3: Spatial distribution of plots allocation by date on pastures

Figure A3 shows a map of plot allocation by periods, while tables A1 and A2 report the dynamics of
land allocation by year. We observe the gradual allocation of plots over time except for some years
(e.g. 2007, 2019, 2022), where an abnormally large number of plots were allocated at once. These
exceptional land allocations are caused by the registration of the plots as forest lands and reserves,
which are usually large and remote. Finally, most of the common grazing land was allocated in
2020-2020, while only single plots were allocated as far as 7 years before the end of observations.

Each parcel (allocated or never-allocated) spans different types of land cover (e.g. pastures, pas-
tures on slopes, hay fields, arable land, forest land, etc.). Land cover determines whether a plot
can or cannot be used for an agricultural purposes such as crop production or livestock grazing
Figure A2. The same website disseminates detailed land cover maps (Directorate of the Land
Cadastre in Kazakhstan 2023a).
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Table A1: Dynamics of land allocation by plots and parcels

By parcel on all land cover types By plot on pastures

Year N Area (HA)
cumulative %

of parcels

cumulative %

of area
N Area (HA)

cumulative %

of plots

cumulative %

area

before 2000 892 43 862.4 6.4% 2.1% 1,174 37 272.2 4.3% 2.3%

2000 112 12 175.4 7.2% 2.7% 137 10 936.9 4.9% 3.0%

2001 329 22 016.8 9.6% 3.8% 448 19 303.1 6.5% 4.2%

2002 282 30 341.9 11.6% 5.3% 460 22 153.3 8.2% 5.6%

2003 182 14 746.5 12.9% 6.0% 240 12 324.3 9.1% 6.3%

2004 467 43 977.1 16.3% 8.1% 678 38 700.7 11.6% 8.7%

2005 590 49 808.6 20.5% 10.5% 899 43 541.4 14.9% 11.5%

2006 627 69 637.2 25.0% 13.9% 990 57 289.6 18.6% 15.0%

2007 795 277 221.1 30.7% 27.3% 1,721 210 954.3 25.0% 28.1%

2008 423 45 379.1 33.8% 29.5% 659 35 445.5 27.4% 30.3%

2009 261 20 415.8 35.6% 30.5% 373 17 714.6 28.8% 31.4%

2010 376 68 075.6 38.3% 33.8% 722 51 960.7 31.5% 34.7%

2011 350 35 346.1 40.8% 35.5% 560 24 874.5 33.5% 36.2%

2012 435 74 182.7 44.0% 39.1% 794 53 050.4 36.5% 39.5%

2013 330 29 361.7 46.3% 40.6% 475 26 172.1 38.2% 41.1%

2014 346 30 163.2 48.8% 42.0% 518 25 073.5 40.1% 42.7%

2015 393 35 591.1 51.6% 43.8% 602 29 720.1 42.4% 44.5%

2016 403 97 810.5 54.5% 48.5% 939 63 454.4 45.9% 48.5%

2017 253 71 739.1 56.4% 52.0% 505 50 971.1 47.7% 51.7%

2018 183 17 541.2 57.7% 52.8% 275 13 908.7 48.7% 52.5%

2019 214 135 784.2 59.2% 59.4% 721 70 379.2 51.4% 56.9%

2020 183 19 127.4 60.5% 60.3% 270 16 940.9 52.4% 57.9%

2021 323 90 524.6 62.8% 64.7% 662 69 961.1 54.9% 62.3%

2022 412 185 979.9 65.8% 73.8% 1,013 166 531.7 58.6% 72.6%

Never

allocated
4,761 541 241.1 100.0% 100.0% 7,735 380 341.5 87.2% 96.3%

Source: own calculations.
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Table A2: Dynamics of plots allocation by land use

Year Ind. farm (own) Ind. farm (rent) Ag. ent. (own) Ag. ent. (rent) Common (near)
Common

(remote)
Forest Protected areas Household Other

before 2000
0.1 [7]

(6)

36.2 [1155]

(877)

1.0 [12]

(9)

2000
0.0 [2]

(2)

3.2 [105]

(89)

7.7 [29]

(20)

0.1 [1]

(1)

2001
0.0 [1]

(1)

19.0 [431]

(315)

0.3 [10]

(7)

0.1 [6]

(6)

2002
0.1 [2]

(2)

18.9 [419]

(266)

3.2 [37]

(12)

0.0 [2]

(2)

2003
0.1 [3]

(3)

10.7 [220]

(166)

1.5 [17]

(13)

2004
1.5 [61]

(51)

30.8 [584]

(395)

0.1 [6]

(3)

6.2 [24]

(15)

0.0 [3]

(3)

2005
1.9 [76]

(59)

36.9 [756]

(495)

0.4 [17]

(14)

4.2 [48]

(21)

0.2 [2]

(1)

2006
1.9 [94]

(77)

34.1 [679]

(466)

0.1 [6]

(5)

6.7 [71]

(35)

11.4 [67]

(1)

2.1 [34]

(24)

0.9 [39]

(19)

2007
5.1 [173]

(132)

38.7 [786]

(521)

1.5 [44]

(18)

13.8 [171]

(67)

145.8 [493]

(25)

0.1 [8]

(1)

0.0 [4]

(4)

6.0 [42]

(27)

2008
10.4 [260]

(205)

10.3 [186]

(135)

5.3 [29]

(13)

6.4 [93]

(42)

0.1 [2]

(2)

0.0 [1]

(1)

0.1 [8]

(5)

2.9 [80]

(20)

2009
2.2 [86]

(70)

9.7 [188]

(134)

0.3 [9]

(9)

5.3 [60]

(22)

0.0 [1]

(1)

0.1 [21]

(21)

0.0 [8]

(4)

2010
2.2 [76]

(64)

21.2 [424]

(261)

0.2 [11]

(11)

5.9 [82]

(29)

22.4 [123]

(6)

0.1 [6]

(5)

2011
3.1 [76]

(63)

19.0 [401]

(248)

1.0 [19]

(7)

1.2 [35]

(16)

0.3 [9]

(3)

0.1 [4]

(2)

0.2 [16]

(11)

2012
3.9 [138]

(114)

21.5 [348]

(246)

3.2 [51]

(11)

15.1 [161]

(40)

0.5 [11]

(4)

8.7 [63]

(2)

0.1 [7]

(4)

0.1 [15]

(14)

2013
2.1 [83]

(67)

15.2 [261]

(173)

0.5 [12]

(11)

8.0 [54]

(25)

0.2 [10]

(2)

0.0 [5]

(4)

0.2 [50]

(48)

2014
5.0 [122]

(81)

16.4 [327]

(209)

0.4 [6]

(6)

2.9 [24]

(17)

0.1 [5]

(1)

0.0 [1]

(1)

0.1 [2]

(1)

0.1 [14]

(14)

0.1 [17]

(16)

2015
2.7 [96]

(80)

22.0 [391]

(236)

1.2 [20]

(15)

3.1 [58]

(31)

0.2 [7]

(3)

0.0 [1]

(1)

0.0 [4]

(4)

0.5 [25]

(23)

2016
3.8 [157]

(135)

15.7 [305]

(188)

0.2 [4]

(4)

7.2 [84]

(44)

0.4 [9]

(9)

36.0 [359]

(2)

0.1 [21]

(21)

2017
1.4 [62]

(56)

5.7 [142]

(104)

0.9 [18]

(10)

37.5 [198]

(30)

0.1 [1]

(1)

3.8 [62]

(33)

1.5 [3]

(1)

0.0 [6]

(6)

0.1 [13]

(12)

2018
0.9 [38]

(35)

9.9 [153]

(101)

0.6 [8]

(5)

2.2 [51]

(21)

0.0 [2]

(2)

0.2 [8]

(8)

0.0 [2]

(2)

0.1 [13]

(9)
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Year Ind. farm (own) Ind. farm (rent) Ag. ent. (own) Ag. ent. (rent) Common (near)
Common

(remote)
Forest Protected areas Household Other

2019
1.4 [56]

(44)

6.8 [174]

(105)

1.2 [11]

(9)

3.1 [73]

(23)

1.1 [12]

(9)

0.0 [2]

(2)

56.6 [374]

(5)

0.2 [19]

(17)

2020
0.9 [39]

(30)

7.6 [153]

(103)

0.2 [6]

(4)

6.0 [47]

(23)

1.9 [11]

(9)

0.3 [1]

(1)

0.1 [13]

(13)

2021
8.8 [59]

(28)

10.5 [239]

(158)

0.1 [7]

(7)

7.3 [67]

(42)

6.6 [57]

(33)

1.0 [2]

(2)

33.7 [186]

(21)

0.0 [1]

(1)

2.0 [44]

(31)

2022
5.8 [50]

(31)

14.3 [285]

(177)

0.2 [8]

(8)

19.4 [157]

(58)

22.6 [149]

(88)

64.9 [186]

(37)

30.0 [152]

(12)

9.2 [20]

(2)

0.1 [6]

(5)

All years
65.3 [1819]

(1437)

434.1 [9112]

(6168)

17.5 [292]

(170)

175.1 [1663]

(662)

32.4 [237]

(143)

66.2 [189]

(40)

237.6 [1076]

(132)

123.7 [901]

(20)

3.0 [122]

(101)

13.9 [426]

(295)

Note: Numbers in columns report the area of land in 1000 ha allocated each year by tenure category. The number of plots is in square brackets and the number of parcels is in

parentheses. Empty cells imply no land allocated under such a category.

Source: own calculations.
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Figure A4: Elevation of pastures
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B.2 Methodologies of spatial data preparation

B.2.1 Goegraphic boundaries of allocated parcels and their metadata

Kazakh State cadastremaps are available according to article 44-1 of the LandCode (2023) from the
following website https://aisgzk.kz/aisgzk/ru/content/maps/. One can freely browse the map there
and see what metadata accompanies the geographical boundaries of the allocated plots. Essentially,
we used geospatial data as is, without manual editing. We gather that the total of 109,668 parcels
were assigned in the cadastre in tour study regions as of January 2023, when our data collection
was made. In the study region, we

As plots are often allocated at different times, the legal framework, when such plots are created is
different. Therefore, tenure categories, legal regimes, and other metadata are often not standard-
ized. We carefully recoded land-use categories and legal regimes relevant to each plot based on the
metadata resulting in the tenure categories used in our analysis.

The land allocation date was also recorded chaotically sometimes. The majority of plots are desig-
nated with exact allocation dates. Those bared such date alone with a note in the metadata which
specified the decree with which this plot was allocated and when. Other plots had the date of the
first normative evaluation, which is the administrative mechanism in which the value of land is
identified in the absence of the land market according to the Land Code (2023). Some plots only
had a polygon creation date. As normative evaluation could take place after the plot was first as-
signed, usually used the plot creation data in the cadastre as an approximate indicator of the time
when such a plot was allocated.

B.2.2 Land cover maps

Detailed land covermaps are also obtained from thewebsite of the cadastre https://aisgzk.kz/aisgzk/
ru/content/maps/ where they are disseminated under the name “karta ugodij”. The land cover map
contains a detailed list of land cover categories that nests from the general aggregates outlined in
Figure A2. For the purpose of our analysis, we dissolved boundaries between landcover categories
that belong to the same group from Figure A2. The land cover map is not ultimate and provides
cover classes only for 97% of the study region.

B.2.3 Refining never-allocated parcels

Never-allocated parcels are created synthetically as a spatial difference between regions and all
allocated parcels. Such difference as is includes any gap between the allocated parcels, which pro-
duces multiple slivers (elongated polygons), lines, and points that are condensed in a handful of
multi-polygons spanning across regions. Therefore, we needed to improve the shape of the un-
allocated parcels into more robustly shaped polygons. To do so, we followed our own algorithm.
Table B1 summaries changes in the area of un-allocated land and number of parcels, Figure B1, Fig-
ure B2, and Figure B3 provide examples of parcels created based on the unallocated ares applying
the following cleaning algorithm.
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Step 1. Produce spatial differences between the area of the each sub-district and allocated parcels.
In the cadastre, every exiting plot is allocated within the boundaries of each sub-district. This
step created 18,109 “mega-parcels”.

Step 2. Removing sliver mega-parcels by performing negative buffering of polygons for -25 me-
ters and removing any polygon that is less than 100 sq meters in size after negative buffering.
Produces 1,681 parcels in the original size and shape that constitute 99.99% of all unallocated
polygons.

Step 3. After all previous steps, the unallocated polygons are still single mega-parcels that fill all
gaps between allocated land. They still contain slivers that are not independent, but parts of
mega-parcels. To separate these slivers from larger polygons and break large polygons into
smaller uniformly shaped parts, we apply the polygon-refining algorithm 3 times with the
following buffer values (750, 250, and 25 meters), corresponding filtering buffer
values (100, 50, and 25 meters) and minimal size thresholds (1000, 500, and 100 sq
meters). This cleaning step results in 8,909 parcels that are 96.2% of the area of all unallo-
cated land.

Polygon-refining algorithm:

1. Construct simplified polygons by buffering and de-buffering all multi-polygons by neg-
ative buffer value and then positive buffer value.

2. Construct perimeter lines out of the buffered/de-buffered polygons;
3. Use these lines to slice original polygons into multiple polygons;
4. Remove polygons that are smaller than minimal size thresholds after buffering

by a negative filtering buffer.

Table B1: Number and area of parcels created on unallocated land at different cleaning steps

Step N parcels Area, 1000 ha

Step1 18,109 593.8

Step2 1,681 591.6

Step3 8,909 571.5

Source: own calculations.

B.2.4 Refining plots / units of analysis

Creating units of analysis consists of several steps summarised below. Table Table B2 shows the
change in s number of plots, parcels, and area of land under analysis at different steps of data
processing:

Step 1. Take the data with all allocated parcels as-is.

Step 2. Take all never-unallocated parcels pre-processed following the above-described method-
ology.
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Mega−parcel
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Step 1
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43.10°N

43.15°N
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Parcels

Parcel 1 (1 083.3 ha)

Parcel 2 (199.6 ha)

Parcel 3 (122.2 ha)

Parcel 4 (61.0 ha)

Parcel 5 (49.5 ha)

Parcel 6 (23.7 ha)

Parcel 7 (20.9 ha)

Parcel 8 (18.0 ha)

Other 23 parcels (50.8 ha)

Step 3

Cleaning unalloacted parcel with id unalloc−3800

Figure B1: Example of an anallocated parcels cleaning 1

Mega−parcel

unalloc−17425 (4 586.5ha)
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43.4°N

43.5°N
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Parcels

Parcel 1 (1 207.5 ha)

Parcel 2 (1 162.9 ha)

Parcel 3 (1 153.8 ha)

Parcel 4 (196.9 ha)

Parcel 5 (98.8 ha)

Parcel 6 (74.9 ha)

Parcel 7 (74.5 ha)

Parcel 8 (63.8 ha)

Other 75 parcels (520.9 ha)

Step 3

Cleaning unalloacted parcel with id unalloc−17425

Figure B2: Example of an anallocated parcels cleaning 2
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Parcel 4 (16.9 ha)

Parcel 5 (14.3 ha)

Parcel 6 (13.8 ha)

Parcel 7 (13.8 ha)

Parcel 8 (11.1 ha)

Other 43 parcels (65.8 ha)

Step 3

Cleaning unalloacted parcel with id unalloc−2479

Figure B3: Example of an anallocated parcels cleaning 3

Step 3. Combine allocated and never-allocated parcels

Step 4. Spatial intersection between allocated and never-allocated parcels and land cover data
creates plots. Here, the land cover map does not cover all the territory of the study region.
Therefore, some parcels are filtered out as a result of the intersection.

Step 5. Keep only those plots on pastures (including pastures on slopes).

Step 6. Keep only those plots, which are greater than 100 square meters in area after buffering by
negative 25 meters.

Table B2: Area and numbers of plots and parcels at different steps of preparing units of analysis

Step N parcels N plots Area, 1000 ha

Step 1. All allocated parcels 109 668 1 734.27

Step 2. All never-allocated parcels 8 909 571.52

Step 3. Combined parcels data set 118 577 2 305.79

Step 4. Spatial intersection 117 341 196 209 2 253.40

Step 5. Plots on pastures 25 984 53 289 1 558.95

- incl. allocated 19 930 38 363 1 177.05

- incl. never-allocated 6 054 14 926 381.90

Step 6. Dropping small plots 13 922 23 570 1 548.98

- incl. allocated 9 162 15 837 1 168.71

- incl. never-allocated 4 760 7 733 380.26

Source: own calculations.
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B.2.5 Remotely sensed data for our units of analysis

To process remotely sensed raster images and compute polygon-level statistics, we used GEE:
Google Earth Engine (Gorelick et al. 2017). Instead of writing code directly in the GEE’s code
editor, we relied on the R Package rgee (Aybar 2022).

Time invariant characteristics

Plot-specific elevation, slope, and aspect are computed based on NASA SRTM Digital Elevation
disseminated at 30m resolution (Farr et al. 2007) available here: https://developers.google.com/
earth-engine/datasets/catalog/USGS_SRTMGL1_003. We use GEE’s built-in functions for com-
puting pixel-level slope, aspect, and subsequently exposure to north and south and then aggregated
polygon-averages of the extracted measures.

Annual characteristics

As an annual measure of pastures vegetation quality is the Normalized Difference Vegetation In-
dex (NDVI). It is measured for each pixel of remotely sensed raster images as a difference be-
tween intensity of light in the read spectrum (RED) with that in the near-infra-red spectrum (NIR):
NDVI𝐼𝑇 = NIR−RED

NIR+RED ∈ [−100, 100]. It ranges from -100 to +100, with -100 equivalent to the dense
snow cover and +100 dense green fores. We used the “MOD13Q1”: MODIS Terra Vegetation In-
dices 16-Day L3 Global 250m SINGrid data set (Didan 2021) accessed through and processed with
GEE (Gorelick et al. 2017). The data could be access here: https://developers.google.com/earth-
engine/datasets/catalog/MODIS_061_MOD13Q1.

250 meters resolution is appropriate for our analysis as the majority of our plots are much larger
than one pixel. Nevertheless, to avoid missing observations for very small parcels, we re-scale
raster images to 30 meters resolution to aggregate polygon-level statistics. Also the use of higher
resolution imagery would have been difficult given the requirement for a consistent annual data set
over a long period. Figure B4 and Figure B5 provide examples of how the remotely sensed peak
NDVI measures appeared in study region and within boundaries of a single plot.

To extract a single peak annual NDVI value per polygon per year we followed a simple algorithm:
(1) computed pixel-specific annual maximum of NDVI; and (2) took a mean of the pixel-specific
maximums at the polygon level.

Monthly characteristics

As climate variations in different periods of the year cause different outcomes on the peak vege-
tation, we decided to control the climate monthly. Specifically, rainfall, surface temperature, and
solar radiation data are gathered for eachmonth in a year for each plot. The resolution of the climate
data is rather coarse and varies from 1 to 27 km in the study region. Despite that coarse resolution,
it is sufficient to control for some general patterns. As we have shown in the theoretical chapter,
our research design does not require any controls at all and results do not change once we exclude
climatic characteristics.
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Figure B4: Peak NDVI distribution in the study region in 2020
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Figure B5: Peak NDVI distribution example on a selected plot in 2020
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Rainfall is approximated by cumulative monthly rainfall in millimeters obtained using Climate
Hazards Group InfraRed Precipitation With Station Data (Version 2.0 Final) (Funk et al. 2015)
disseminated at the 10km spatial resolution. We aggregate daily data over a month for each year
estimating cumulative monthly rainfall per pixel and then average multiple pixels data per polygon.
Data can be accessed here: https://developers.google.com/earth-engine/datasets/catalog/UCSB-
CHG_CHIRPS_DAILY.

Solar radiation is measured using short wave radiation flux in watt per sq. meter (band
“SWdown_f_tavg”) in GLDAS-2.1: Global Land Data Assimilation System data set (Rodell et al.
2004) disseminated at the 27km spatial resolution. Data can be accessed here: https://developers.
google.com/earth-engine/datasets/catalog/NASA_GLDAS_V021_NOAH_G025_T3H. Similarly
to the rainfall data, we calculate cumulative monthly radiation per pixel and then average pixel
data per polygon.

Surface temperature is computed based on the Average Daytime Land Surface Temperature band
(“LST_Day”) from “MOD21C3.061”: Terra Land Surface Temperature and 3-Band Emissivity
Monthly L3 Global 0.05 Deg CMG data set (Hulley and Hook 2021) disseminated at the 1000 m
spatial resolution. Data can be accessed here: https://developers.google.com/earth-engine/datasets/
catalog/MODIS_061_MOD21C3. To derive monthly polygon-level surface temperature, we first
compute the monthly pixel-level average and then aggregate an average of pixels over the poly-
gon.
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B.2.6 Methodology of calculating spillover variables

To measure the effect of spillover from land allocation in the neighborhood on the allocated and
unallocated plots, we first constructed a distance matrix between the centroid of each plot and the
nearest border of its neighbors in the 30 km radius on pastures. As livestock grazing requires the
livestock to travel on a flat surface, there is a sensible distance limit to which spillovers can take
place. We implement a spatial configuration with the 𝑗 rings being 5, 10, 15, and 30 km and assume
no spillovers beyond the 30 km point as it is unfeasible to travel such distance with cattle for one
day. Using allocation date, we calculated the area of plots allocated and unallocated in each of these
bins at each year of analysis. Then, a simple ratio resulted in time-varying variables indicating the
share of land on pastures within different distance bins relative to each plot that is allocated in
each given year. Figure B6 and Figure B7 provide examples of spillover variables calculation for
respectively one allocated and never allocated plots.

Figure B6: Example of calculating spillover effects by distance rings
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Figure B7: Example of calculating spillover effects by distance rings for never-allocated plot
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C.3 Empirical approach to causal analysis

To test hypotheses about the causal effect of land allocation on pastures quality, we need to estimate
the Average Treatment Effect on Treated (ATT). The outcome is annual maximum of the Normal-
ized Difference Vegetation Index (𝑌𝑖,𝑡) observed at the plot level 𝑖 in time 𝑡. The treatment here
𝐷𝑖,𝑡 ∈ {0, 1} is a binary variable that indicates whether or not 𝑖 is allocated in the cadastre at 𝑡.
Following the potential outcome framework (Rubin 1974; Imbens and Rubin 2015), the observed
vegetation quality is 𝑌𝑖,𝑡 = 𝐷𝑖,𝑡𝑌𝑖,𝑡(1)+(1−𝐷𝑖,𝑡)𝑌𝑖,𝑡(0) , where 𝑌𝑖,𝑡(1) and 𝑌𝑖,𝑡(0) are respec-
tively potential outcomes of allocation and not allocation. In a two-period example (𝑡 ∈ {1, 2}with
𝑖 = (1, 2, …, 𝑁) and 𝐷𝑖,𝑡 reduced to 𝐷𝑖) a canonical Difference-in-Difference (DiD) setting with
cohort-level treatment and synthetic controls (e.g. Card and Krueger 1994; Abadie 2021) identifies
unit-specific treatment effect as 𝜏𝑖 = 𝑌𝑖,2(1) − 𝑌𝑖,2(0). The ATT is an average of unit-specific
treatment effects Equation 4.

𝜏 ≡ 𝐸 [𝑌𝑖,2(1) − 𝑌𝑖,2(0)|𝐷𝑖 = 1] (4)

Causal interpretation of 𝜏 stands on key assumptions of the canonical DiD: parallel trends in the
development of treated and not treated units; no anticipation, when the treatment has no causal
effect on the outcome before the treatment application; and independent sampling. In a multi-
period setting 𝑡 ∈ (1, ..., 𝑘, ∞), there are always treated𝐷𝑖,0 = 𝐷𝑖,1,...𝑘 = 1, once treated𝐷𝑖,0 =
0 (but 𝐷𝑖,1...𝑘 = 1), or never treated individuals 𝐷𝑖,0 = 𝐷𝑖,1...𝑘 = 0 and 𝐷𝑖,∞ = 1. Besides,
once treated, individuals remain treated until the end of the observation period. Such heterogeneous
in timing and lifetime treatment is called a staggered research designwith absorbing treatment.

C.3.1 Two ways fixed effect model in a staggered design

To estimate the ATT in staggered design, authors often use canonical DiD or its intuitive imple-
mentation as Two Ways Fixed Effect (TWFE) model (Equation 5) 19. Resulting 𝜏TWFE is inter-
preted as a ATT of a treatment applied any time against the not-treated counterfactual: 𝜏TWFE =
𝑌𝑖,𝑡(𝑔)−𝑌𝑖,𝑡(∞) for 𝑔 > 𝑡, where 𝑔 is the time of the first treatment (de Chaisemartin and DHault-
foeuille 2022; Baker, Larcker, and Wang 2022). ̂𝜏TWFE is identified based on the assumptions of
the canonical DiD, which are extended with the assumptions specific to the staggered design. Such
are: treatment effect homogeneity over time and units (de Chaisemartin and DHaultfoeuille 2020;
Athey and Imbens 2022); the parallel trends in never treated and treated after treatment groups,
and the staggered no anticipation (Roth et al. 2023).

𝑌𝑖,𝑡 = 𝜂⋅,𝑡 + 𝜂𝑖,⋅ + 𝜏TWFE𝐷𝑖,𝑡 + 𝛽𝑋𝑖,𝑡 + 𝜖𝑖,𝑡 (5)

Lately, literature started to question the appropriateness of the TWFE models for estimating the
ATT overall (Kropko and Kubinec 2020) and particularly in a staggered design (Roth et al. 2023;

19In Equation 5, 𝜂⋅,𝑡 and 𝜂𝑖,⋅ are linear and additive fixed effects of time and individuals, 𝜖𝑖,𝑡 is the error terms and
𝑋𝑖,𝑡 is the matrix of time-varying control variables.

48



Baker, Larcker, and Wang 2022). The reason for that lies in the restrictive nature of the treatment
effect homogeneity assumption, which may not be always satisfied in a real application. Authors
argue that in nearly all policy-related analyses, where the staggered design is used, it is impossible
to assume homogeneity of the treatment effects, thus concluding that a substantial share of recent
empirical literature might be in question.

C.3.2 Heterogeneous treatment effects

The TWFE it fails to estimate true ATT, when treatment effect are heterogeneous (over time
and/or over individuals). (de Chaisemartin and DHaultfoeuille 2020; Athey and Imbens 2022; Sun
and Abraham 2021; Callaway and Sant’Anna 2021b) show that theoretically, while (Borusyak,
Jaravel, and Spiess 2023; Goodman-Bacon 2021; de Chaisemartin and DHaultfoeuille 2022) de-
velop extensive empirical examples. To explain how, TWFE model fails under treatment effect
heterogeneity, (de Chaisemartin and DHaultfoeuille 2020; Goodman-Bacon 2021) propose two
complementary DiD decomposition approaches20 . They show how 𝜏TWFE can be decomposed as
a weighted (by 𝜔𝑙 ) average of individual two-periods-two-groups (2x2) Difference-in-Difference
estimators 𝜏2×2

𝑙 over 𝑙 cohorts of the treated and untreated individuals. Although, both decomposi-
tion approaches are slightly different21, they conclude that 𝜏TWFE = ∑𝑙 𝜔𝑙𝜏2×2

𝑙 and∑𝑙 𝜔𝑙 = 1.
Both methodologies show that some 2x2 DiD are “clean comparisons”: occurring between once-
treated and never- or not-yet-treated counterfactual; while others are “forbidden comparisons”:
where once/later treated are compared with earlier / always treated counterfactuals. “Forbidden
comparisons” substantially distort the weights 𝜔𝑙, leading to “negative weights” in (de Chaise-
martin and DHaultfoeuille 2020) decomposition. Combination of the “forbidden comparisons”
and “negative weights” makes 𝜏TWFE invalid when treatment effects are heterogeneous between
individuals, over time relative to treatment (𝑟), or both: 𝜏⋅,𝑡 ≠ 𝜏𝑟,⋅ ≠ 𝜏𝑟,𝑡 ≠ 𝜏 . (de Chaisemartin
and DHaultfoeuille 2020; Goodman-Bacon 2021) suggest diagnostic measures such as communi-
cating weights and prevalence of negative weights, as well as assessing the number of “forbidden”
2x2 comparisons to understand the extent of a possible bias. However, solutions to the TWFE
model’s flaws are not straightforward and depends on the type of heterogeneity (see (Roth et al.
2023) for a detailed discussion).

20(Borusyak, Jaravel, and Spiess 2023) also proposes similar decomposition approach reaching same conclusions as
(de Chaisemartin and DHaultfoeuille 2020; Goodman-Bacon 2021). (Athey and Imbens 2022) however follow
a research design-based decomposition with the core assumption about a random assignment of the staggered
treatment, coming to a similar conclusion.

21(Goodman-Bacon 2021) as a treatment (control) group considers a combination (cohort) of all individuals with a
certain starting date of treatment to the end of observations as the treatment status does not change once treated.
(de Chaisemartin and DHaultfoeuille 2020) analyzes each treatment (control) period as a separate group yielding a
larger number of 2x2 DiD comparisons. Besides, differences between (de Chaisemartin and DHaultfoeuille 2020)
and (Goodman-Bacon 2021) lead to different weighting structures. Although both conclude that specific values
of 𝜔𝑙 depend on the number of periods that treated groups are observed in the data in each 2x2 comparison 𝑙,
(de Chaisemartin and DHaultfoeuille 2020) approach shows that some weights can take negative values, while
(Goodman-Bacon 2021) usually finds positive weights that follow a convex function. With the homogeneous
treatment effects assumption, negative and positive weights cancel out each other yielding true estimates of ATT.
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The treatment effects heterogeneity over time relative to the treatment 𝑟 (but homogeneity across
groups 𝑙) 𝜏2×2

𝑙,𝑟 = 𝜏𝑟 for all 𝑟 = −∞; +∞ violates the parallel trends assumption. To relax it, we
can apply the dynamic TWFE model (Equation 1) aliased with an event-study (Roth et al. 2023;
Callaway and Sant’Anna 2021b). The event-study adds year-before-after-treatment (𝑟) indicator
variables𝑅𝑖,𝑡 and estimates corresponding coefficients 𝛾𝑟 (Sun and Abraham 2021). In Equation 1,
𝑅𝑖,𝑡 = 𝑡 − 𝐺𝑖 + 1 represents the time before/after initial treatment 𝐺𝑖 for unit 𝑖. When 𝑡 = −1
variable𝑅𝑖,𝑡 is usually omitted to avoid perfect collinearity. The event-study results provide period-
relative-to-treatment-specific estimates of ATT (𝛾𝑟 = ̂𝜏𝑟), while the overall estimate of the ATT (
̂𝜏EVENT ) is an average of 𝛾𝑟 for 𝑡 ∈ {0, 𝑇 } weighted by the relative frequency 𝜔𝑟 of each period 𝑟
observation in the data ( ̂𝜏EVENT = ∑𝑇

𝑟=0 𝛾𝑟𝜔𝑟/∑𝑇
𝑟=0 𝜔𝑟 ) with the standard errors obtained using

the delta method.

Results of an event-study provide useful insight on how the treatment effect changes over time
and are often used to validate the parallel trends assumption. Although, the parallel trends is an
identifying assumption for estimating the ATT, in nearly all non-experimental settings, it might hold
only weakly (as any observational process is affected by time-varying confounders) and it might be
sensitive to the functional form. Under treatment effect heterogeneity in the staggered absorbing
treatment design, the pre-treatment dummy variable may also appear significant falsely rejecting
the parallel trend assumption (Sun and Abraham 2021). Doubly-robust estimation methods can be
used then to condition the parallel trends on covariates (Callaway and Sant’Anna 2021b; Sant’Anna
and Zhao 2020). Ultimately, to test for any existing pre-treatment trend, it is still recommended to
use the event-study type dynamic model (Equation 1) while estimating it using one of the treatment
effect heteroscedasticity robust methods discussed below (Roth et al. 2023).

Гnder the treatment effect heterogeneity across individuals, the Equation 1 still estimates insen-
sible ATT (Sun and Abraham 2021; Borusyak, Jaravel, and Spiess 2023). To further relax this as-
sumption, we need to use heterogeneity-robust estimators that bypass the limitations of the TWFE
models. Essentially, these estimators isolate clear comparisons between treated groups and never
(not yet) treated counterfactuals and use appropriate weights that correspond to the underlying pur-
pose of the analysis (de Chaisemartin and DHaultfoeuille 2020).

C.3.3 Treatment effect heterogeneity-robust estimators

Several treatment effect heterogeneity-robust estimators and diagnostic tools meant to correct the
inference have been developed recently (see the following reviews: de Chaisemartin and DHault-
foeuille (2022), Roth et al. (2023), and Baker, Larcker, and Wang (2022)). Below, we provide a
general discussion of the key methods used in our empirical analysis and in Chapter 4, we discuss
identifying assumptions relevant to our analysis.

The Callaway and Sant’Anna estimator (referred to asCS below) (Callaway and Sant’Anna 2021b)
implemented in R in the package did (Callaway and Sant’Anna 2021a) allows explicitly set the
control groups to never-treated or not-yet-treated and produces non-negative weights for aggregat-
ing ATT. It estimates all the pairwise comparisons, where ATT is the weighted average of all 2x2
DiD and the event-study is an aggregated of certain 2x2 DiD by 𝑟. The CS assumes parallel tend
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in the post-treatment period, however permits to relax it, estimating the conditional parallel trends
using doubly-robust or inverse probability weighting (IPW) methods.

The Sun and Abraham estimator (referred to as SA below) (Sun and Abraham 2021) implemented
in R in packages fixest (Bergé 2018) follows a similar aggregating strategy as the CS estimator,
however, uses never-treated or the last treated group as a counter-factual. Its results are similar to
CS when the same counterfactual is used, however, under restricted parallel trends assumption it is
more efficient. It is also more flexible in aggregating pre- and post-treatment periods.

The family of imputation estimators (referred to as IMP below) are represented by multiple al-
ternatives (Borusyak, Jaravel, and Spiess 2023; Gardner 2022; Wooldridge 2023). They estimate
regression coefficients and fixed effects of the TWFE model using the untreated sub-sample and
then predict potential outcomes of no-treatment for the treated observations. The difference be-
tween predicted potential outcomes of no treatment and factual is the resulting individual-level
estimates of a treatment effect, which is then aggregated into the ATT or a event-study. The IMP
is valid under no anticipation and more restrictive parallel trends assumptions in all groups and
all time periods, however, it also derives consistent estimates under group-specific linear trends.
Given the size and complexity of our data, we use the (Gardner 2022) estimator implemented in
the R package did2s (Butts and Gardner 2021) as the other alternatives (Borusyak, Jaravel, and
Spiess 2023; Wooldridge 2023) implemented in didimputation and etwfe (Butts 2021a; McDer-
mott 2023) respectively turned out computationally impossible, when challenged by a large sample
with more than 500 thousand observations.

The CS, SA, and IMP estimators are different in what groups are used as counterfactuals, how
the covariates are incorporated and how restrictive are the parallel trend assumptions. This cre-
ates trade-offs between efficiency and strength of identifying assumptions (Roth et al. 2023). The
CS/SA uses the last pre-treatment period, while the IMP uses the average of pre-treatment peri-
ods. Therefore, the IMP approach may be more efficient under the strong parallel trends assump-
tion with modest heteroscedasticity and not serial correlation (Wooldridge 2023; de Chaisemartin
and DHaultfoeuille 2022). In the setting when the parallel trends assumption might not hold over
long periods of time or there is a risk of a serial correlation, the CS/SA are preferred (Marcus and
Sant’Anna 2021). Both approaches are rather vulnerable to the no-anticipation assumption viola-
tion, although, using the treatment announcement date instead of a treatment might be helpful (de
Chaisemartin and DHaultfoeuille 2022).

There are other estimators as well, which we omit due to their lesser relevance to our observational
study design. (Athey and Imbens 2022; Roth and Sant’Anna 2021; Bojinov, Rambachan, and Shep-
hard 2021) propose estimators, where treatment timing randomization is assumed. The estimator
proposed in (de Chaisemartin and DHaultfoeuille 2020) permits design with non-absorbing treat-
ment that could turn on and off, but in the staggered design with absorbing treatment it converges
to the CS estimator. (Roth et al. 2023; de Chaisemartin and DHaultfoeuille 2022) provide a more
elaborate discussion of alternative estimators.
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D.4 Auxiliary descriptive statistics

This section presents auxiliary descriptive statistics such as plots area and number by land cover
(tbl_lu_by_lc?), allocation dynamics by individualized tenure and allocation date certainty
(tbl_tenure_by_certainty?), plots characteristics by tenure and rayon Table D3 as well as derived
statistics at parcel level Table D4.

Plots distance to settlements is homogeneous for all tenure categories as well as never allocated
land, except for common grazing land located near to villages. Figures D4, D3, and D2 presenting
the distribution of distances to villages of among different plot categories suggest that systematic
land use differences may exist between common grazing land because of its distance to the vil-
lages[^18]. This calls for matching sub-samples of never-allocated land for comparing with the
“common grazing” tenures. Therefore, we divide never allocated land between the one near vil-
lages (within a 5 km radius from settlement) and remote (beyond 5 km). The 5 km threshold is used
based on the observation that in the cadastre, plots assigned for common grazing under sub-category
“remote” are located beyond 5 km from the nearest settlement. Overall, this division creates two
groups of never-allocated land that are located at a similar distance from settlements and altitudes
as comparable common pastures.

There are systematic differences in NDVI between allocated and unallocated land by year Ta-
ble D5.

Table D1: Plost number by land cover and tenure

Tenure Hayfield Pasture Pasture on slopes

Ind. farm (ownership) 5.7[375] 51.7[1608] 13.6[211]

Ind. farm (rent) 29.4[1947] 327.9[7147] 106.2[1965]

Ag. enterprise (ownership) 1.0[46] 14.2[249] 3.3[43]

Ag. enterprise (rent) 8.7[199] 110.7[1090] 64.4[573]

Common grazing (near villages) 1.4[42] 28.7[221] 3.6[16]

Common grazing (remote) 40.9[111] 25.3[78]

Forest 0.7[36] 121.9[605] 115.7[471]

Protected areas 0.5[17] 69.8[434] 53.9[467]

Household 0.0[2] 2.3[103] 0.7[19]

Other 0.5[33] 11.7[349] 2.2[77]

Never allocated (near villages) 6.7[472] 111.8[3442] 14.8[409]

Never allocated (remote) 4.9[280] 141.5[2538] 112.2[1344]

Note: columns report plot area in 1000 ha, and plots number in square brackets.

Source: own calculations.
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Table D2: Plost number by tenure and allocation certainty

Ind. farm

(ownership)
Ind. farm (rent)

Ag. enterprise

(ownership)
Ag. enterprise (rent)

Year Approximate Approximate Exact Approximate Approximate Exact

before 2000 0.1[7] 0.2[3] 36.0[1152] 1.0[12]

2000 0.0[2] 3.2[105] 7.7[29]

2001 0.0[1] 19.0[431] 0.3[10]

2002 0.1[2] 0.2[4] 18.7[415] 3.2[37]

2003 0.1[3] 0.1[5] 10.6[215] 1.5[17]

2004 1.5[61] 1.0[13] 29.9[571] 0.1[6] 0.0[1] 6.2[23]

2005 1.9[76] 0.6[17] 36.3[739] 0.4[17] 4.2[48]

2006 1.9[94] 2.3[47] 31.8[632] 0.1[6] 0.0[2] 6.7[69]

2007 5.1[173] 2.7[68] 36.0[718] 1.5[44] 3.1[14] 10.7[157]

2008 10.4[260] 2.1[50] 8.2[136] 5.3[29] 0.9[9] 5.5[84]

2009 2.2[86] 2.2[46] 7.5[142] 0.3[9] 0.9[19] 4.4[41]

2010 2.2[76] 1.6[42] 19.6[382] 0.2[11] 0.1[2] 5.8[80]

2011 3.1[76] 3.6[86] 15.4[315] 1.0[19] 1.0[26] 0.2[9]

2012 3.9[138] 6.7[110] 14.8[238] 3.2[51] 3.8[38] 11.3[123]

2013 2.1[83] 4.0[78] 11.2[183] 0.5[12] 5.8[20] 2.2[34]

2014 5.0[122] 4.0[82] 12.4[245] 0.4[6] 0.8[2] 2.1[22]

2015 2.7[96] 4.7[81] 17.3[310] 1.2[20] 0.5[12] 2.6[46]

2016 3.8[157] 4.9[106] 10.8[199] 0.2[4] 2.2[38] 5.0[46]

2017 1.4[62] 3.0[72] 2.7[70] 0.9[18] 0.1[2] 37.4[196]

2018 0.9[38] 1.6[54] 8.3[99] 0.6[8] 2.2[51]

2019 1.4[56] 1.9[59] 4.9[115] 1.2[11] 1.1[19] 2.0[54]

2020 0.9[39] 1.7[30] 6.0[123] 0.2[6] 0.0[4] 6.0[43]

2021 8.8[59] 3.3[64] 7.2[175] 0.1[7] 1.9[16] 5.4[51]

2022 5.8[50] 2.6[54] 11.7[231] 0.2[8] 0.8[7] 18.6[150]

Note: columns report plot area in 1000 ha, and plots number in square brackets.

Source: own calculations.
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Table D3: Plots characteristics by tenure and rayon

Tenure N plots [parcels] Area, 1000 ha Size, ha Elevation, km Slope, degree
Distance to

settlements, km
Peak NDVI

Av. N plots [plot

size] in parcel

(1) (2) (3) (4) (5) (6) (7) (8)

Full sample
23 570

[13 922]
1549.0

65.7

(326.8)

1.84

(0.83)

12.4

(9.0)

12.3

(9.7)

57.9

(21.5)

1.7

[44.7]

Once allocated
15 837

[9 162]
1168.7

73.8

(366.3)

1.86

(0.84)

12.7

(9.1)

12.5

(9.5)

59.2

(21.3)

1.7

[51.5]

Never allocated
7 733

[4 760]
380.3

49.2

(224.0)

1.78

(0.80)

11.2

(8.8)

11.6

(10.1)

53.6

(21.5)

1.6

[31.7]

Ind. farm
10 931

[7 605]
499.3

45.7

(92.6)

1.61

(0.62)

8.9

(6.7)

8.2

(5.6)

53.9

(19.1)

1.4

[46.0]

Ind. farm (own)
1 819

[1 437]
65.3

35.9

(140.4)

1.06

(0.49)

7.4

(6.4)

9.4

(6.5)

49.3

(19.8)

1.3

[27.6]

Ind. farm (rent)
9 112

[6 168]
434.1

47.6

(79.6)

1.69

(0.59)

9.1

(6.8)

8.1

(5.4)

54.7

(18.9)

1.5

[50.3]

Ag. enterprise
1 955

[832]
192.6

98.5

(330.3)

2.05

(1.00)

12.8

(9.1)

17.4

(11.6)

59.6

(20.4)

2.4

[79.0]

Ag. enterprise (own)
292

[170]
17.5

59.9

(205.9)

1.85

(0.89)

10.8

(9.8)

15.3

(11.4)

69.0

(14.6)

1.7

[41.6]

Ag. enterprise (rent)
1 663

[662]
175.1

105.3

(347.2)

2.07

(1.01)

13.0

(9.1)

17.6

(11.6)

58.6

(20.7)

2.5

[88.6]

Common (near)
237

[143]
32.4

136.5

(319.0)

1.04

(0.39)

10.2

(7.3)

2.5

(1.3)

59.7

(19.4)

1.7

[151.6]

Common (remote)
189

[40]
66.2

350.1

(955.0)

1.64

(0.68)

10.8

(8.3)

16.4

(6.7)

45.3

(24.6)

4.7

[416.2]

Forest
1 076

[132]
237.6

220.9

(1087.5)

2.22

(0.85)

18.4

(8.9)

15.2

(9.3)

68.8

(21.3)

8.2

[80.2]

Protected areas
901

[20]
123.7

137.3

(549.3)

2.34

(0.83)

19.7

(8.9)

18.0

(11.5)

69.5

(18.2)

45.0

[190.2]

Household
122

[101]
3.0

24.7

(83.4)

1.13

(0.50)

9.2

(6.8)

8.4

(3.1)

43.5

(15.2)

1.2

[12.9]

Other
426

[295]
13.9

32.7

(247.6)

1.23

(0.99)

6.9

(8.4)

9.8

(7.9)

58.7

(16.9)

1.4

[15.9]

Note: Column ’Tenure’ stratifies samples into the ’Full sample’, subsamples of ’Once allocated’ and ’Never allocated’ land, and subsamples by detailed tenure

categories. The first column reports a number of plots and parcels (in square brackets) under each category. In columns 3 through 7 report means and standard

deviations (in parentheses) weighted by plot size. Column 8 reports the number of plots and average plot size (in square brackets) within the parcel under each

category.

Source: own calculations.
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Table D4: Parcel characteristics by tenure for all districts

Tenure
N plots /

parcels

Total area,

1000 ha
Size, ha

Elevation,

km

Slope,

degree

Distance to

settlements,

km

North

exposure

East

exposure
Peak NDVI

Rainfall,

mm

Temperature,

C

Solar

radiation,

mW m-2

Average N

plots in

parcel

Average

plot size in

parcel, HA

Rayon: All rayons

Full sample 13 922 2062.1
148.1

(1417.9)

1.98

(0.87)

13.3

(8.8)

13.3

(9.8)

0.016

(0.059)

-0.002

(0.035)

59.9

(20.1)

254.2

(106.3)

27.6

(7.8)

230.9

(7.1)
1.693 44.7

Once allocated 9 162 1520.9
166.0

(1634.0)

1.99

(0.87)

13.7

(8.8)

13.6

(9.5)

0.016

(0.057)

-0.002

(0.033)

61.5

(19.9)

255.2

(101.2)

27.4

(7.5)

230.9

(7.4)
1.729 51.5

Never allocated 4 760 541.1
113.7

(859.7)

1.97

(0.89)

12.2

(8.7)

12.6

(10.5)

0.018

(0.066)

-0.001

(0.041)

55.5

(19.9)

251.3

(119.5)

28.1

(8.7)

230.9

(6.0)
1.625 31.7

Never allocated

(near villages)
2 662 225.1

84.5

(646.9)

1.62

(0.57)

8.5

(7.3)

2.6

(1.4)

0.030

(0.084)

-0.004

(0.057)

58.9

(18.6)

214.9

(64.8)

31.3

(4.3)

230.4

(4.8)
1.447 28.5

Never allocated

(remote)
2 162 386.5

178.8

(1261.2)

2.15

(0.94)

14.6

(8.6)

17.0

(9.3)

0.011

(0.055)

-0.001

(0.031)

54.8

(21.5)

264.2

(133.3)

26.4

(9.6)

231.2

(6.8)
1.796 38.8

Ind. farm 7 605 567.4
74.6

(158.3)

1.60

(0.64)

8.7

(6.5)

8.1

(5.6)

0.023

(0.074)

-0.005

(0.043)

54.8

(18.8)

230.5

(93.8)

31.8

(5.3)

231.1

(5.6)
1.437 46.0

Ind. farm

(ownership)
1 437 75.8

52.7

(261.5)

1.04

(0.50)

7.0

(5.8)

8.9

(6.4)

0.038

(0.087)

-0.003

(0.049)

50.8

(19.4)

166.9

(57.7)

34.5

(4.4)

230.0

(6.6)
1.266 27.6

Ind. farm (rent) 6 168 491.6
79.7

(121.8)

1.69

(0.61)

9.0

(6.6)

8.0

(5.5)

0.020

(0.072)

-0.005

(0.042)

55.5

(18.7)

240.3

(94.5)

31.4

(5.3)

231.2

(5.4)
1.477 50.3

Ag. enterprise 832 285.3
342.9

(1750.7)

2.23

(1.03)

13.9

(9.0)

18.8

(12.0)

0.016

(0.063)

-0.004

(0.036)

60.9

(18.0)

267.4

(110.8)

24.9

(8.6)

229.8

(7.3)
2.350 79.0

Ag. enterprise

(ownership)
170 23.8

140.0

(542.4)

1.77

(0.98)

10.9

(9.7)

14.8

(11.8)

0.035

(0.084)

-0.002

(0.059)

67.5

(14.4)

286.6

(148.0)

27.6

(6.8)

232.7

(9.5)
1.718 41.6

Ag. enterprise

(rent)
662 261.5

395.0

(1940.3)

2.27

(1.03)

14.2

(8.9)

19.1

(11.9)

0.014

(0.060)

-0.004

(0.033)

60.3

(18.2)

265.7

(106.6)

24.6

(8.7)

229.5

(7.1)
2.512 88.6

Common grazing

(near villages)
143 47.2

330.1

(712.1)

1.03

(0.37)

10.0

(6.8)

2.9

(1.3)

0.017

(0.071)

-0.008

(0.033)

53.9

(20.5)

169.4

(38.6)

33.9

(2.8)

226.5

(6.1)
1.657 151.6

Common grazing

(remote)
40 71.9

1798.5

(3321.7)

1.66

(0.68)

11.3

(8.0)

16.4

(6.6)

0.027

(0.039)

0.009

(0.024)

45.7

(24.0)

199.4

(60.7)

31.4

(7.4)

226.8

(6.4)
4.725 416.2

Forest 132 311.0
2355.8

(8178.2)

2.29

(0.76)

19.1

(7.6)

14.6

(7.7)

0.006

(0.019)

0.001

(0.017)

70.9

(18.9)

282.0

(112.3)

24.5

(6.0)

234.4

(7.8)
8.152 80.2

Protected areas 20 226.4
11321.9

(21893.2)

2.54

(0.70)

20.6

(6.3)

20.3

(8.1)

0.002

(0.011)

-0.002

(0.005)

71.3

(14.0)

300.4

(65.9)

21.4

(5.2)

229.1

(9.1)
45.050 190.2

Household 101 3.4
33.5

(145.7)

1.13

(0.50)

9.4

(6.1)

8.3

(3.1)

0.004

(0.085)

0.018

(0.041)

44.2

(15.2)

163.5

(63.8)

36.2

(3.9)

234.2

(4.2)
1.208 12.9

Other 295 21.5
72.7

(485.5)

1.50

(1.16)

9.2

(9.7)

11.3

(9.3)

0.049

(0.081)

-0.002

(0.038)

60.9

(14.9)

214.4

(102.1)

27.5

(8.3)

230.3

(8.6)
1.444 15.9

Note: Column ’Tenure’ stratifies samples into the ’Full sample’, subsamples of ’Once allocated’ and ’Never allocated’ land, and subsamples by detailed tenure categories. The first

column reports a number of plots and parcels (in square brackets) under each category. In columns 3 through 7 report means and standard deviations (in parentheses) weighted by plot size.

Column 8 reports the number of plots and average plot size (in square brackets) within the parcel under each category.

Source: own calculations.
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Figure D1: Distribution of plots and parcels sizes
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Figure D2: Distribution of the common grazing plots’ distances from the settlements
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Figure D3: Distribution of the common grazing parcels’ distances from the settlements
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Figure D4: Distribution of the plots with other tenure regimes by distances from the settlements

Table D5: Checks and balances of the pead NDVI by allocation status

Full sample Excl. never allocated

Allocated Not allocated t-test Not-yet allocated t-test

All years 62.0 (18.8) 59.7 (19.8) 2.2*** [0.1] 6189.5 (1980.8) 34.3*** [6.5]

2000 59.2 (20.8) 57.7 (20.8) 1.5* [0.6] 5916.4 (2057.6) 5.8 [59.9]

2001 61.5 (18.0) 59.7 (19.0) 1.8*** [0.4] 6101.7 (1876.2) 52.9 [45.7]

2002 68.9 (14.9) 66.8 (16.9) 2.1*** [0.3] 6796.9 (1659.2) 97.1** [34.6]

2003 66.5 (16.8) 64.8 (18.4) 1.7*** [0.4] 6613.9 (1806.4) 38.2 [37.3]

2004 63.9 (17.2) 62.5 (18.6) 1.3*** [0.3] 6406.9 (1834.6) -17.5 [34.8]

2005 62.2 (18.1) 61.6 (19.2) 0.7* [0.3] 6339.6 (1891.0) -117.6*** [33.3]

2006 61.4 (19.2) 59.9 (20.1) 1.4*** [0.3] 6185.7 (1974.7) -49.5 [33.1]

2007 64.4 (17.9) 61.4 (19.0) 3.0*** [0.3] 6308.6 (1876.9) 132.0*** [29.3]

2008 57.3 (20.3) 54.4 (20.9) 2.9*** [0.3] 5641.6 (2094.3) 87.3** [32.8]

2009 62.7 (18.7) 59.0 (20.2) 3.7*** [0.3] 6074.0 (2013.2) 197.3*** [30.9]

2010 65.0 (17.6) 61.6 (19.0) 3.4*** [0.2] 6325.7 (1908.5) 173.5*** [29.3]

2011 65.0 (17.8) 61.5 (19.4) 3.5*** [0.2] 6298.9 (1950.7) 202.6*** [30.2]

2012 60.8 (19.5) 57.1 (20.8) 3.7*** [0.3] 5872.0 (2128.0) 205.1*** [33.8]

2013 61.2 (18.8) 58.1 (20.1) 3.1*** [0.3] 6022.3 (2046.6) 94.5** [33.2]

2014 54.5 (19.3) 52.1 (20.2) 2.5*** [0.3] 5503.4 (2073.7) -51.7 [34.7]

2015 63.1 (18.5) 59.5 (20.3) 3.6*** [0.3] 6145.2 (2089.2) 164.7*** [36.0]

2016 67.1 (15.9) 62.9 (17.9) 4.2*** [0.2] 6269.8 (1916.0) 440.9*** [35.6]

2017 65.8 (17.5) 61.2 (19.6) 4.6*** [0.2] 6144.5 (2145.9) 431.3*** [42.5]

2018 63.4 (18.4) 58.8 (20.3) 4.6*** [0.3] 5922.8 (2253.5) 419.4*** [46.5]

2019 63.0 (17.8) 57.8 (19.7) 5.1*** [0.3] 5651.4 (2251.0) 645.2*** [53.2]

2020 61.1 (18.7) 56.1 (20.4) 5.1*** [0.3] 5461.6 (2387.8) 650.6*** [60.4]

2021 57.7 (20.0) 52.4 (20.9) 5.3*** [0.3] 4978.8 (2424.3) 790.7*** [77.9]

2022 62.8 (18.8) 58.6 (19.5) 4.2*** [0.3]
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Full sample Excl. never allocated

Allocated Not allocated t-test Not-yet allocated t-test

2023 57.9 (18.9) 53.7 (19.1) 4.2*** [0.3]

Note: this table reports means and standard deviations (in the parentheses) of peak annual NDVI for different groups of plots by their allocation

status, subsample, and year. Row ’All years’ computes NDVI over all years (2000-2023). The ’Allocated’ column reports statistics only for those

plots that were allocated in each year, thus allocated plots may appear as unallocated in the earlier years and allocated in the later years. The ’Full

sample’ group of columns summarizes unallocated plots that consist of plots unallocated at the time and later allocated as well as never allocated

plots synthetically generated on the suitable land. ’Excl. never allocated’ group of columns only compares ever allocated plots. Columns ’t-test’

report the difference between means in ’Allocated’ and ’Not allocated’ groups, statistical significance level of the difference, and standard errors in

square brackets. Whelch’s two-sample t-test is used with the assumption of unequal variances between two groups.

Statistical significance levels are: ‘***’ p-value < 0.001, ‘**’ p-value < 0.01, ‘*’ p-value < 0.05, p-value < ‘.’ 0.1, and ‘ ’ p-value >= 0.1.

Source: own calculations.
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Controlling for variance in NDVI with other control variables is exceptionally important as com-
paring simple means of NDVI by allocated and never-allocated common grazing land (Table D6)
shows that there is difference between them.

Table D6: NDVI difference between common grazing and never-allocated land by their distance to
settlements and year

Near villages Remote

Common

grazing
Never allocated t-test

Common

grazing
Never allocated t-test

All years 61.8 (17.3) 60.1 (16.8) 1.6*** [0.2] 49.1 (24.0) 55.5 (22.0) -6.4*** [0.4]

2000 56.6 (17.6) 56.9 (17.8) -0.3 [1.2] 46.7 (25.3) 53.2 (23.4) -6.4*** [1.9]

2001 59.2 (16.5) 59.3 (15.9) -0.2 [1.1] 47.5 (22.9) 55.3 (21.8) -7.8*** [1.7]

2002 66.4 (15.4) 67.4 (13.8) -0.9 [1.0] 53.3 (23.8) 62.2 (20.0) -9.0*** [1.8]

2003 65.1 (17.0) 65.5 (15.3) -0.4 [1.1] 50.8 (23.5) 59.6 (21.1) -8.8*** [1.7]

2004 63.6 (17.1) 62.7 (15.7) 0.8 [1.1] 49.0 (23.2) 57.4 (21.0) -8.4*** [1.7]

2005 64.0 (17.1) 61.1 (16.2) 3.0** [1.1] 50.0 (24.4) 56.5 (21.7) -6.4*** [1.8]

2006 62.7 (17.3) 60.0 (17.0) 2.7* [1.2] 50.0 (24.9) 54.5 (22.6) -4.5* [1.8]

2007 64.9 (17.3) 62.5 (16.1) 2.3* [1.2] 49.5 (23.2) 56.3 (21.3) -6.8*** [1.7]

2008 56.2 (17.5) 53.4 (17.6) 2.9* [1.2] 45.6 (24.1) 50.9 (23.2) -5.3** [1.8]

2009 62.6 (18.2) 60.2 (17.1) 2.4* [1.2] 47.1 (23.9) 54.2 (22.4) -7.0*** [1.8]

2010 64.0 (16.1) 61.9 (15.6) 2.1* [1.1] 53.0 (24.6) 58.3 (21.4) -5.2** [1.8]

2011 64.1 (16.9) 62.8 (16.1) 1.3 [1.1] 51.0 (24.7) 57.6 (21.5) -6.6*** [1.8]

2012 58.1 (17.3) 57.2 (17.4) 0.8 [1.2] 49.2 (25.5) 54.4 (22.9) -5.1** [1.9]

2013 62.4 (17.6) 59.2 (17.0) 3.2** [1.2] 48.7 (24.5) 54.0 (21.6) -5.2** [1.8]

2014 55.9 (16.7) 51.4 (16.8) 4.5*** [1.1] 44.3 (23.3) 48.9 (22.0) -4.5** [1.7]

2015 61.9 (17.5) 60.7 (16.6) 1.2 [1.2] 49.2 (24.6) 56.2 (22.3) -7.0*** [1.8]

2016 66.0 (16.6) 65.7 (14.7) 0.2 [1.1] 52.9 (21.7) 60.2 (19.2) -7.3*** [1.6]

2017 65.5 (16.3) 63.7 (15.6) 1.7 [1.1] 52.0 (24.7) 58.4 (21.1) -6.4*** [1.8]

2018 63.6 (16.8) 61.4 (16.4) 2.2* [1.1] 49.4 (24.1) 55.9 (21.8) -6.4*** [1.8]

2019 61.6 (16.7) 60.4 (15.8) 1.2 [1.1] 49.7 (23.8) 56.0 (21.3) -6.2*** [1.8]

2020 59.9 (18.3) 58.3 (16.8) 1.7 [1.2] 46.9 (24.0) 54.5 (21.7) -7.7*** [1.8]

2021 57.3 (17.2) 54.6 (17.2) 2.8* [1.1] 46.4 (24.7) 51.0 (23.0) -4.6* [1.8]

2022 62.3 (16.8) 61.2 (16.4) 1.0 [1.1] 49.5 (21.9) 56.0 (21.8) -6.5*** [1.6]

2023 58.4 (15.8) 55.4 (15.7) 3.0** [1.1] 46.4 (23.0) 52.0 (21.7) -5.6** [1.7]

Note: this table reports means and standard deviations (in parentheses) of peak annual NDVI for common grazing plots

and never allocated plots within 5 km from the settlement (near villages) and otherwise (remote). Row ’All years’

computes NDVI over all years (2000-2023). Each column ignores the plot allocation date and computes statistics for

all plots in the corresponding tenure categories for each year. Columns ’t-test’ report the difference between means in

’Common grazing’ and ’Never allocated’ groups, the statistical significance level of the difference, and standard errors

in square brackets. Whelch’s two-sample t-test is used with the assumption of unequal variances between two groups.

Statistical significance levels are: ‘***’ p-value < 0.001, ‘**’ p-value < 0.01, ‘*’ p-value < 0.05, p-value < ‘.’ 0.1, and

‘ ’ p-value >= 0.1.

Source: own calculations.
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Table D7: Cumulative monthly precipitations normalized to a standard normal distribution for each
month

Normalized monthly precipitations

01 02 03 04 05 06 07 08 09 10 11 12

Full

sample

0.00

(1.00)

0.01

(0.99)

-0.06

(0.89)

-0.02

(0.99)

0.02

(1.01)

0.01

(1.00)

0.01

(1.00)

0.01

(1.01)

-0.01

(1.00)

-0.02

(0.99)

-0.01

(1.00)

0.01

(1.00)

2000
-0.29

(0.57)

-0.68

(0.46)

-0.49

(0.45)

-0.34

(0.60)

0.27

(0.88)

0.50

(0.53)

0.61

(0.61)

0.29

(0.59)

1.71

(1.38)

1.09

(1.65)

0.14

(0.71)

-0.04

(0.56)

2001
-0.03

(0.78)

-0.67

(0.35)

-0.43

(0.44)

-0.06

(0.69)

0.00

(0.85)

-0.57

(0.60)

1.00

(0.93)

0.57

(0.80)

0.36

(0.95)

0.99

(1.58)

-0.78

(0.59)

0.25

(0.87)

2002
0.45

(0.89)

-0.07

(0.80)

0.22

(0.80)

0.87

(1.20)

0.92

(1.06)

0.72

(0.80)

0.28

(0.78)

0.20

(0.62)

-0.21

(0.55)

0.17

(1.03)

-0.48

(0.63)

0.87

(0.84)

2003
0.08

(0.75)

0.78

(0.91)

-0.01

(0.74)

0.69

(1.18)

0.84

(1.00)

1.61

(1.06)

0.92

(0.62)

0.00

(0.59)

-0.34

(0.53)

-0.07

(0.84)

1.29

(0.93)

0.02

(0.66)

2004
-0.13

(0.69)

0.10

(0.69)

0.20

(0.91)

-0.06

(0.70)

-0.01

(0.94)

-0.19

(0.57)

2.38

(1.18)

-0.40

(0.49)

-0.38

(0.44)

-0.12

(0.76)

0.86

(1.13)

1.03

(1.14)

2005
-0.23

(0.55)

-0.37

(0.44)

0.07

(0.83)

-0.36

(0.58)

0.35

(0.99)

-0.25

(0.62)

-0.72

(0.50)

2.77

(1.35)

-0.59

(0.43)

-0.22

(0.79)

-0.63

(0.51)

-0.26

(0.52)

2006
0.71

(0.86)

0.09

(0.90)

-0.32

(0.47)

-0.36

(0.61)

-0.22

(0.69)

0.39

(0.73)

-0.03

(0.42)

-0.75

(0.42)

0.86

(0.88)

0.25

(0.99)

-0.33

(0.48)

0.02

(0.55)

2007
-0.49

(0.52)

-0.33

(0.59)

0.40

(0.92)

-0.43

(0.46)

0.56

(1.06)

0.05

(0.86)

0.61

(0.95)

-0.11

(0.59)

0.40

(1.08)

-0.49

(0.50)

-0.62

(0.54)

-0.11

(0.65)

2008
-0.20

(0.44)

-0.02

(0.62)

-0.35

(0.49)

-0.48

(0.55)

-0.36

(0.69)

-0.72

(0.48)

-0.13

(0.47)

-0.53

(0.52)

-0.21

(0.70)

0.30

(1.11)

-0.44

(0.65)

0.00

(0.71)

2009
-0.36

(0.52)

-0.23

(0.76)

-0.22

(0.56)

0.72

(1.06)

-0.23

(0.69)

0.01

(0.60)

-0.13

(0.60)

0.13

(0.56)

1.11

(1.02)

-0.18

(0.76)

0.10

(0.77)

-0.05

(0.58)

2010
1.36

(1.34)

1.98

(1.39)

1.00

(1.46)

-0.36

(0.63)

-0.06

(0.76)

1.01

(1.34)

0.28

(0.96)

0.29

(0.62)

-0.08

(0.65)

0.64

(1.29)

-0.78

(0.55)

-0.50

(0.50)

2011
-0.92

(0.31)

1.30

(1.12)

-0.29

(0.54)

-0.41

(0.56)

0.52

(1.14)

-0.11

(0.77)

0.09

(0.67)

0.53

(0.78)

0.74

(1.12)

-0.09

(0.75)

0.56

(0.65)

-0.23

(0.46)

2012
-0.70

(0.42)

0.43

(0.93)

0.16

(0.80)

-0.61

(0.46)

-0.24

(0.68)

-0.15

(0.49)

-0.53

(0.46)

-0.36

(0.56)

0.20

(0.89)

-0.21

(0.74)

0.15

(0.68)

0.71

(0.97)

2013
1.36

(1.41)

-0.07

(0.46)

-0.27

(0.50)

0.29

(1.08)

-0.70

(0.54)

-0.10

(0.48)

-0.41

(0.53)

0.74

(0.74)

-0.59

(0.45)

-0.69

(0.29)

-0.95

(0.48)

0.09

(0.86)

2014
0.74

(0.98)

0.20

(0.89)

-0.49

(0.40)

-0.25

(0.76)

-0.78

(0.53)

-0.53

(0.70)

-0.59

(0.62)

0.28

(0.82)

-0.11

(0.61)

0.28

(0.89)

0.18

(0.86)

-0.66

(0.34)

2015
0.37

(0.78)

0.28

(0.88)

-0.13

(0.66)

-0.30

(0.72)

-0.07

(0.76)

0.48

(1.28)

-0.61

(0.56)

0.45

(0.72)

-0.21

(0.50)

-0.01

(0.69)

0.78

(1.02)

0.95

(1.04)

2016
0.78

(1.07)

-1.25

(0.16)

-0.37

(0.50)

0.67

(1.34)

0.98

(1.10)

1.05

(0.81)

0.82

(0.76)

-0.07

(0.80)

-0.20

(0.66)

-0.10

(0.70)

1.23

(1.03)

1.57

(1.27)

2017
-0.22

(0.57)

0.38

(0.71)

-0.31

(0.60)

1.15

(1.53)

-0.02

(0.70)

0.47

(1.09)

-0.56

(0.59)

-0.62

(0.50)

-0.07

(0.65)

-0.52

(0.40)

-0.06

(0.95)

0.22

(0.59)

2018
-0.35

(0.36)

0.00

(0.65)

0.33

(0.91)

0.21

(0.96)

0.19

(0.98)

-0.42

(0.77)

-0.25

(0.50)

-0.77

(0.44)

-0.52

(0.45)

-0.07

(0.73)

-0.03

(0.53)

-0.32

(0.51)
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Normalized monthly precipitations

01 02 03 04 05 06 07 08 09 10 11 12

2019
0.27

(0.83)

0.00

(0.56)

-0.67

(0.33)

0.11

(0.98)

-0.61

(0.65)

-0.02

(0.71)

-0.53

(0.64)

-0.64

(0.58)

0.40

(0.79)

-0.63

(0.36)

-0.34

(0.84)

0.41

(0.93)

2020
-1.01

(0.30)

-0.19

(0.70)

-0.70

(0.35)

0.15

(0.89)

0.01

(0.76)

-0.85

(0.55)

-0.77

(0.40)

-0.15

(0.60)

-0.72

(0.40)

-0.63

(0.34)

-0.24

(0.72)

-1.38

(0.18)

2021
-1.02

(0.18)

0.06

(0.72)

0.30

(0.85)

-0.57

(0.56)

-0.96

(0.48)

-0.99

(0.43)

-0.01

(0.66)

-0.88

(0.34)

-1.25

(0.32)

0.23

(0.90)

-0.79

(0.55)

-1.34

(0.21)

2022
-0.68

(0.54)

-0.72

(0.35)

1.20

(1.50)

-0.50

(0.55)

0.82

(1.27)

-0.89

(0.33)

-1.01

(0.43)

-1.07

(0.37)

-1.10

(0.28)

-0.37

(0.51)

1.03

(0.98)

-1.03

(0.21)

2023
0.50

(0.77)

-0.79

(0.32)

-0.39

(0.55)

-0.28

(0.71)

-0.80

(0.60)

-0.24

(0.68)

-0.52

(0.47)

0.42

(0.67)

0.59

(0.80)

-0.02

(0.79)

-0.01

(0.69)

0.01

(0.64)

Source: own calculations.
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Table D8: Monthly average of the surface temperature normalized to a standard normal distribution
for each month

Normalized mean surface temperature

02 03 04 05 06 07 08 09 10 11 12 01

Full

sample

0.01

(1.00)

0.02

(1.00)

-0.02

(1.03)

-0.02

(1.03)

0.00

(1.02)

0.00

(1.01)

-0.01

(1.02)

-0.02

(1.02)

-0.01

(1.01)

0.01

(1.00)

0.01

(1.00)

0.01

(1.00)

2000
0.49

(1.06)

-0.55

(0.97)

0.05

(1.12)

0.25

(1.00)

0.06

(1.03)

0.15

(1.09)

-0.15

(1.01)

-0.12

(1.02)

-1.28

(1.13)

-0.32

(0.95)

0.19

(0.94)

0.01

(0.73)

2001
0.17

(0.89)

0.63

(1.03)

-0.42

(1.01)

0.26

(0.96)

-0.08

(1.07)

0.02

(1.05)

-0.28

(1.04)

-0.40

(1.19)

-0.39

(0.99)

0.97

(0.71)

-0.80

(0.48)

0.02

(0.88)

2002
0.31

(0.99)

0.05

(0.95)

-0.53

(1.02)

-0.77

(0.89)

-0.55

(0.74)

-0.54

(0.86)

-0.19

(0.89)

-0.23

(0.89)

0.20

(0.77)

0.63

(0.93)

-0.74

(0.60)

0.16

(0.99)

2003
0.05

(0.85)

-0.73

(0.87)

-0.81

(1.09)

-0.27

(0.92)

-0.20

(0.85)

-0.88

(0.70)

-0.45

(0.93)

-0.14

(0.86)

0.04

(0.84)

-0.91

(0.77)

-0.01

(0.96)

0.23

(0.69)

2004
0.05

(1.14)

-0.20

(1.05)

-0.06

(1.06)

-0.23

(0.94)

-0.05

(0.91)

-0.32

(0.84)

-0.12

(0.95)

-0.18

(0.96)

0.18

(0.68)

0.47

(0.91)

-0.10

(0.90)

0.35

(1.05)

2005
-0.84

(0.46)

0.27

(0.78)

0.02

(0.93)

-0.30

(0.86)

-0.04

(0.97)

-0.01

(1.07)

-0.48

(0.91)

0.05

(1.00)

0.60

(0.76)

0.09

(1.01)

-0.08

(0.67)

-0.15

(0.72)

2006
0.60

(1.09)

0.47

(0.93)

0.23

(1.01)

-0.03

(0.92)

-0.17

(0.99)

-0.11

(0.94)

0.38

(0.95)

0.04

(0.79)

0.37

(0.81)

0.65

(0.78)

-0.02

(0.62)

-0.79

(0.58)

2007
0.90

(0.88)

-0.12

(0.90)

0.32

(0.69)

-0.19

(0.87)

0.03

(1.01)

-0.24

(0.88)

-0.14

(0.99)

0.41

(0.93)

-0.03

(1.00)

0.55

(0.86)

-0.62

(0.90)

0.56

(0.93)

2008
-0.38

(0.80)

0.65

(0.81)

0.07

(0.93)

0.47

(1.01)

0.47

(1.07)

0.28

(0.97)

0.27

(1.02)

0.11

(0.94)

0.02

(0.93)

-0.05

(0.92)

1.27

(1.06)

-1.08

(0.58)

2009
0.20

(0.89)

0.05

(0.93)

-0.45

(1.00)

-0.21

(1.14)

-0.08

(1.04)

-0.10

(0.93)

-0.16

(1.02)

-0.74

(1.00)

0.22

(0.78)

-0.43

(0.96)

-0.14

(0.77)

0.75

(0.92)

2010
-0.76

(0.36)

-0.50

(0.84)

-0.29

(1.07)

-0.46

(0.95)

-0.19

(0.97)

-0.33

(0.92)

-0.31

(0.95)

-0.18

(0.82)

0.18

(0.86)

0.72

(0.84)

0.39

(0.77)

-0.31

(0.63)

2011
0.06

(0.82)

-0.49

(0.82)

0.07

(1.01)

-0.24

(0.79)

-0.28

(0.98)

-0.19

(0.88)

-0.05

(0.99)

0.11

(0.94)

0.15

(0.83)

-0.01

(1.07)

-0.23

(0.78)

-0.71

(0.68)

2012
-0.84

(0.38)

-0.40

(0.97)

0.62

(0.83)

0.21

(0.95)

-0.05

(1.03)

0.08

(1.03)

0.32

(0.95)

0.33

(0.93)

-0.12

(1.05)

-0.18

(0.71)

-1.01

(0.48)

-0.62

(0.70)

2013
-0.64

(0.40)

0.49

(0.86)

0.23

(0.79)

0.12

(0.98)

0.15

(0.95)

0.04

(0.95)

-0.07

(0.98)

0.41

(0.94)

0.99

(0.62)

0.57

(0.83)

0.67

(1.11)

-0.09

(0.64)

2014
-1.23

(0.30)

-0.22

(0.70)

-0.05

(0.89)

0.60

(0.96)

0.34

(0.99)

0.41

(0.94)

0.55

(1.00)

0.24

(1.00)

-0.43

(0.83)

-0.34

(0.95)

-0.04

(0.87)

-0.15

(0.63)

2015
0.36

(0.99)

-0.36

(0.94)

0.00

(0.97)

0.10

(1.15)

0.16

(1.14)

0.30

(0.98)

0.21

(1.02)

-0.51

(1.03)

0.40

(0.71)

-0.25

(0.85)

0.52

(1.24)

0.45

(1.00)

2016
-0.03

(0.94)

0.85

(0.73)

0.27

(0.88)

-0.74

(0.77)

-0.15

(0.86)

-0.50

(0.78)

-0.54

(0.97)

0.10

(0.92)

-0.71

(0.82)

-0.52

(0.68)

0.29

(0.93)

0.93

(1.14)

2017
0.12

(0.83)

-0.55

(1.00)

-0.37

(1.10)

0.08

(0.92)

-0.20

(0.97)

0.25

(1.03)

-0.04

(0.93)

0.63

(0.92)

0.13

(0.69)

0.05

(0.85)

0.34

(0.85)

0.02

(0.94)

2018
-0.22

(0.74)

-0.06

(0.82)

0.01

(0.89)

-0.37

(1.04)

0.12

(0.98)

-0.02

(0.94)

0.16

(1.01)

-0.34

(0.93)

0.46

(0.82)

-1.18

(0.69)

-0.08

(0.75)

-0.59

(0.60)
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Normalized mean surface temperature

02 03 04 05 06 07 08 09 10 11 12 01

2019
-0.30

(0.67)

0.52

(0.92)

-0.13

(0.83)

0.07

(1.02)

0.03

(1.04)

0.23

(1.00)

0.46

(0.97)

-0.34

(0.85)

-0.19

(0.96)

-0.03

(0.80)

0.31

(0.79)

0.38

(0.90)

2020
0.66

(0.77)

0.39

(0.88)

0.48

(0.92)

0.56

(1.00)

0.24

(1.12)

0.19

(1.00)

0.07

(0.99)

-0.47

(0.94)

0.13

(0.98)

0.27

(0.89)

-0.30

(0.71)

0.13

(0.73)

2021
1.00

(1.05)

0.04

(0.90)

0.30

(1.20)

0.59

(1.09)

0.39

(1.09)

0.61

(0.98)

0.22

(1.10)

0.73

(0.90)

-1.28

(1.07)

-0.37

(0.93)

0.84

(1.22)

0.19

(0.68)

2022
0.30

(0.95)

-0.36

(0.88)

0.14

(1.03)

0.16

(0.82)

0.03

(1.00)

0.20

(0.98)

0.11

(0.95)

0.77

(0.86)

0.20

(0.97)

-0.21

(0.83)

-0.44

(0.73)

1.22

(1.32)

2023
0.20

(0.85)

0.63

(0.78)

-0.08

(0.96)

-0.08

(1.09)

0.15

(0.89)

0.50

(0.99)

0.00

(0.89)

-0.74

(0.79)

-0.01

(0.82)

0.01

(0.79)

0.01

(0.75)

-0.70

(0.59)

Source: own calculations.
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Table D9: Monthly cumulative short wave radiation flux (watt per sq. meter) normalized to a stan-
dard normal distribution for each month

Standardized cumulative short wave radiation flux

01 02 03 04 05 06 07 08 09 10 11 12

Full

sample

0.00

(0.99)

-0.01

(1.00)

0.00

(0.99)

-0.01

(0.99)

-0.02

(1.00)

-0.02

(1.00)

-0.02

(1.00)

-0.01

(0.99)

-0.01

(1.00)

0.00

(1.00)

0.00

(0.99)

0.00

(0.99)

2000
-0.49

(1.16)

1.48

(0.99)

0.59

(0.80)

0.39

(0.58)

-0.14

(0.66)

-0.36

(0.61)

-0.65

(0.55)

0.18

(0.50)

0.19

(0.69)

-0.92

(0.57)

-0.88

(0.94)

-0.40

(1.06)

2001
0.50

(0.99)

0.65

(0.86)

1.49

(0.76)

0.30

(0.84)

0.22

(0.71)

0.15

(0.52)

-0.67

(0.46)

-0.02

(0.59)

-0.13

(0.89)

-0.19

(0.60)

1.06

(0.90)

-1.44

(1.17)

2002
-0.44

(1.07)

-0.07

(1.08)

-0.56

(0.77)

-2.04

(0.65)

-0.28

(0.83)

-0.49

(0.73)

-0.07

(0.79)

0.58

(0.64)

1.00

(0.85)

0.42

(0.65)

0.59

(1.12)

-0.87

(0.96)

2003
-0.54

(0.83)

-0.62

(0.73)

-0.81

(0.84)

-1.54

(0.70)

-1.05

(0.85)

-0.65

(0.81)

-0.51

(0.63)

1.27

(0.53)

1.12

(0.62)

0.46

(0.65)

-1.10

(1.16)

-0.19

(1.41)

2004
-0.29

(1.18)

-0.01

(1.05)

-0.66

(1.04)

-0.23

(0.84)

0.55

(0.99)

0.10

(0.93)

-1.16

(0.71)

0.04

(0.71)

0.58

(0.60)

0.76

(0.42)

-1.11

(1.22)

-0.86

(1.28)

2005
-0.83

(1.18)

0.15

(1.02)

0.23

(0.85)

0.98

(0.70)

-1.55

(0.65)

-0.23

(0.91)

0.68

(1.02)

-0.22

(1.04)

0.71

(1.01)

1.02

(0.43)

0.06

(0.99)

0.42

(0.72)

2006
-0.73

(1.14)

-0.79

(1.15)

-0.13

(0.73)

0.21

(0.68)

-0.88

(0.90)

-0.39

(0.88)

1.09

(0.73)

1.74

(0.55)

0.60

(0.73)

0.20

(0.62)

-0.09

(0.74)

0.36

(0.89)

2007
0.88

(1.07)

-0.24

(0.94)

-0.93

(0.48)

-0.05

(0.58)

-0.01

(0.47)

0.20

(0.88)

-1.06

(0.91)

1.18

(0.63)

1.84

(0.55)

1.10

(0.53)

0.30

(0.55)

-0.55

(0.93)

2008
-0.06

(0.65)

0.26

(0.39)

0.50

(0.49)

0.11

(0.55)

-0.21

(0.59)

0.96

(0.77)

-0.50

(0.81)

-0.11

(0.48)

0.08

(0.53)

-0.08

(0.49)

0.65

(0.47)

-0.16

(0.50)

2009
-0.04

(0.71)

-1.12

(0.76)

-0.37

(0.64)

-0.81

(0.68)

-0.01

(0.76)

0.06

(0.92)

0.00

(0.79)

-0.10

(0.73)

-1.16

(0.88)

0.59

(0.30)

0.14

(0.53)

0.16

(0.48)

2010
-0.98

(0.48)

-1.23

(0.55)

-0.51

(0.36)

-0.25

(0.78)

-0.16

(0.82)

-1.52

(1.15)

-0.23

(0.80)

0.10

(0.64)

-0.45

(0.32)

0.19

(0.31)

1.46

(0.41)

0.75

(0.28)

2011
0.63

(0.30)

-0.62

(0.38)

0.76

(0.31)

0.57

(0.45)

0.69

(0.95)

1.34

(1.12)

1.61

(0.66)

0.56

(0.90)

0.65

(0.30)

0.15

(0.30)

0.13

(0.50)

0.65

(0.37)

2012
0.84

(0.33)

0.54

(0.38)

0.56

(0.43)

1.56

(0.27)

1.27

(0.61)

1.52

(0.68)

1.30

(0.52)

1.31

(0.31)

-0.27

(0.40)

0.05

(0.29)

-0.08

(0.56)

0.22

(0.37)

2013
0.89

(0.46)

0.82

(0.51)

1.12

(0.60)

0.92

(0.38)

0.93

(0.44)

0.80

(0.52)

0.27

(0.51)

-0.29

(0.38)

0.32

(0.37)

0.67

(0.25)

0.32

(0.45)

0.01

(0.74)

2014
-0.71

(0.75)

-0.37

(0.46)

0.40

(0.48)

0.58

(0.44)

1.96

(0.30)

0.61

(0.50)

1.22

(0.46)

0.38

(0.29)

-0.70

(0.57)

-0.32

(0.42)

-0.64

(0.81)

0.26

(0.49)

2015
-0.52

(0.58)

-0.46

(0.55)

-0.08

(0.59)

0.45

(0.53)

0.10

(0.40)

0.55

(0.38)

0.49

(0.42)

-0.35

(0.39)

-0.40

(0.59)

-0.05

(0.52)

-0.68

(0.91)

-0.39

(0.66)

2016
-0.41

(0.86)

1.52

(0.42)

0.11

(0.79)

-0.25

(0.67)

-0.47

(0.65)

-0.23

(0.55)

-0.84

(0.68)

-1.20

(0.55)

-0.76

(0.77)

-0.22

(0.52)

-0.56

(0.79)

-1.04

(0.90)

2017
-0.27

(0.92)

-0.23

(0.55)

-0.32

(0.76)

-0.82

(0.72)

0.22

(0.64)

-0.39

(0.39)

0.36

(0.39)

-1.04

(0.45)

-0.57

(0.48)

-0.05

(0.30)

0.20

(0.67)

-0.08

(0.78)

2018
0.32

(0.44)

-0.34

(0.55)

-1.22

(0.87)

-0.15

(0.43)

-0.18

(0.67)

-0.35

(0.82)

0.16

(0.49)

-0.12

(0.49)

-0.23

(0.32)

-0.21

(0.34)

-0.43

(0.64)

0.44

(0.57)
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Standardized cumulative short wave radiation flux

01 02 03 04 05 06 07 08 09 10 11 12

2019
0.22

(0.51)

0.45

(0.47)

0.54

(0.45)

-0.97

(0.79)

0.34

(0.34)

-0.34

(0.51)

0.23

(0.42)

-0.22

(0.40)

-0.44

(0.54)

0.16

(0.31)

0.19

(0.58)

0.32

(0.63)

2020
0.36

(0.53)

0.47

(0.44)

0.99

(0.39)

0.09

(0.59)

-0.36

(0.29)

-0.52

(0.44)

-0.76

(0.50)

-0.41

(0.42)

-0.86

(0.55)

0.16

(0.19)

-0.06

(0.52)

0.88

(0.48)

2021
0.74

(0.45)

-0.62

(0.71)

-1.07

(0.56)

0.33

(0.46)

-0.15

(0.52)

-0.04

(0.40)

-0.86

(0.51)

-1.05

(0.50)

0.37

(0.43)

-0.10

(0.27)

0.87

(0.51)

0.82

(0.60)

2022
0.31

(0.90)

0.60

(0.50)

-1.19

(0.47)

0.15

(0.49)

-1.20

(0.52)

-0.27

(0.58)

-0.13

(0.51)

-1.22

(0.62)

0.14

(0.40)

-0.13

(0.25)

-0.37

(0.58)

0.70

(0.27)

2023
0.61

(0.32)

-0.34

(0.41)

0.44

(0.50)

0.25

(0.49)

-0.03

(0.53)

-1.00

(0.46)

-0.39

(0.53)

-1.27

(0.45)

-1.78

(0.49)

-3.76

(0.10)

0.00

(0.58)

0.00

(0.60)

Source: own calculations.
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E.5 Weights decomposition of the BM estimates

Table E1 presents the weights decomposition of 𝜏BM derived following the methodology of (de
Chaisemartin and DHaultfoeuille 2020) based on the benchmark model (column BM) as well as
BM without the synthetic unallocated plots (BM no unallocated) and BM without controls. About
20% to 30% of all weights are negative in all models. Sigma, of the cross-group heterogeneity,
is small (e.g. as |𝜏BM| <

√
3𝜎𝑓𝑒), suggesting based on the Corollary 1 in (de Chaisemartin and

DHaultfoeuille 2020) that even smallest plausible treatment effect heterogeneity could lead to the
bias estimates of the ATT. This calls for using relevant heteroscedasticity robust estimators. Re-
sults are robust to the functional form without covariates and sample variation without synthetic
unallocated plots.

Table E1: Weights decomposition of the benchmark model

BM BM (no unallocated) BM (no controls)
N positive weights 175 259 153 330 172 226
N negative weights 39 661 61 590 42 694
% share of negative
weights

18.5% 28.7% 19.9%

Sum of positive weights 1.111 1.316 1.111
Sum of negative weights -0.111 -0.316 -0.111
Estimated ATT -0.0024 -0.0031 -0.0014
Sigma of the cross-group
heterogeneity

0.0022 0.0019 0.0013

Minimal value of Sigma to
bias the estimate of ATT

0.00001 0.00001 0.00000

Source: own calculations.

Figure E1 presents the weights decomposition for the BM model using (Goodman-Bacon 2021)
methodology. Note that we had to use BM estimation without any covariates. We use the R pack-
age bacondecomp for performing Goodman-Bacon (2021) decomposition. It fails to run some
individual 2x2 DiD estimates with our remotely sensed covariates. The likely reason is that our
covariates lack variance in some 2x2 comparisons. Climate data has a coarse spatial resolution (10
km) and plots in some 2x2 comparisons are spatially close, therefore those are heavily affected by
collinearity. Nevertheless, functional form sensitivity analysis shows that our estimates are robust
to omitting covariates. Therefore, we can treat Figure E1 as the second-best option.

Figure E1 shows that weighted averages of all 2x2 DiD comparisons are negative (DiD est.), even
for the “forbidden comparisons”. This suggests that the opposite sign bias is unlikely in our analy-
sis. About 70% of weights are on treated vs untreated or earlier treated vs later treated suggesting
that the bulk of the ATT estimate originates from the clean comparisons. This cautiously ensures
the validity of the TWFE model, although calls again for the heteroscedasticity robust estimators.
It is likely that with a heteroscedasticity robust estimator, the estimated ATT will not change sub-
stantially, however, it may become more efficient.
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Figure E1: Weights structure of the BM estimates of the ATT using Goodman-Bacon (2021) de-
composition
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F.6 Functional form and control variables

Equation 6 specifies how control variables 𝑋 are introduced in our regressions. To account for
possible non-linearities in the biological processes of vegetation growth as a response to the fluctu-
ations in rainfall, temperature, and solar radiation, we introduce each time-varying climatic control
variable individually for eachmonth𝑀 (36 variables with coefficients 𝛽1𝑀 , 𝛽2𝑀 , and 𝛽3𝑀), along
with the full combination of the within-month interaction terms: pairwise (36 variables with coef-
ficients 𝛽4𝑀 , 𝛽5𝑀 , and 𝛽6𝑀) and triple (12 variables with coefficients 𝛽7𝑀). Our control strategy
consists of 84 control variables. In the early stages, we considered cross-month interaction terms
between variables, however, such specifications quickly became prone to overfitting without reg-
ularization, which is beyond the scope of our analysis.

𝑋 = ∑
𝑀

𝛽1𝑀RF𝑀,𝑖,𝑡 + ∑
𝑀

𝛽2𝑀TMP𝑀,𝑖,𝑡 + ∑
𝑀

𝛽3𝑀RAD𝑀,𝑖,𝑡+

∑
𝑀

𝛽4𝑀RF𝑀,𝑖,𝑡 × TMP𝑀,𝑖,𝑡+

∑
𝑀

𝛽5𝑀RF𝑀,𝑖,𝑡 × RAD𝑀,𝑖,𝑡+

∑
𝑀

𝛽6𝑀TMP𝑀,𝑖,𝑡 × RAD𝑀,𝑖,𝑡+

∑
𝑀

𝛽7𝑀RF𝑀,𝑖,𝑡 × TMP𝑀,𝑖,𝑡 × RAD𝑀,𝑖,𝑡

(6)
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G.7 Auxiliary results for the main regression analysis

Table G1: Estimates sensitivity to functional form using SA estimator

BM SA
SA excl.

interactions

SA

April-August

SA excl.

controls

ATT
-0.0041**

(0.0013)

-0.0035***

(0.0010)

-0.0024*

(0.0010)

-0.0040***

(0.0010)

-0.0042***

(0.0010)

Rain, m. 5
0.0162***

(0.0006)

0.0164***

(0.0007)

-0.0117***

(0.0006)

0.0166***

(0.0006)

Rain, m. 6
-0.0052***

(0.0005)

-0.0054***

(0.0005)

-0.0108***

(0.0004)

-0.0066***

(0.0005)

Rain, m. 7
0.0121***

(0.0007)

0.0129***

(0.0007)

0.0078***

(0.0006)

0.0134***

(0.0007)

Temperature, m. 5
-0.0594***

(0.0007)

-0.0591***

(0.0007)

-0.0630***

(0.0008)

-0.0637***

(0.0007)

Temperature, m. 6
-0.0444***

(0.0009)

-0.0445***

(0.0009)

-0.0546***

(0.0008)

-0.0483***

(0.0009)

Temperature, m. 7
-0.0214***

(0.0009)

-0.0209***

(0.0009)

-0.0302***

(0.0009)

-0.0226***

(0.0009)

N obs. 565,680 565,679 565,679 565,679 565,679

N ind. FE 23,570 23,570 23,570 23,570 23,570

N indep. var. 130 613 565 564 529

Within R sq. adj. 21.1 21.6 16.8 18.3 1.7

Statistical significance levels are: ‘***’ p-value < 0.001, ‘**’ p-value < 0.01, ‘*’ p-value < 0.05, p-value < ‘.’ 0.1, and

‘ ’ p-value >= 0.1.

Source: own calculations.

TableG1 tests the robustness of the estimates to the functional form. It reports results estimatedwith
the SA estimator for models without any control variables (column “SA excl. controls”), with the
same set of control, but without within-month interaction terms (column “SA excl. interactions”),
and with controls for only five months between April and August. All specifications point towards
the robustness of the main ATT estimands. As rainfall, surface temperature, and radiation are
introduced in the normalized to the standard normal distribution form, their interpretation must be
adjusted. Specifically, it is a log-level transformation where a change of the control variable by
1𝜎 (1 standard deviation compared to the historical levels) causes approximately 100𝛽% change
in the peak NDVI. As in all regressions, except for columns “SA excl. interactions” and “SA
excl. controls”, all control variables interact with each other within a month, Table G1 reports their
marginal effects evaluated at the mean of the corresponding interaction terms and delta-method-
based standard errors.
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Table G2: Estimates sensitivity to allocation date quality and weighting by plot area

BM static BM SA IMP static IMP

Panel A. Including never-allocated

All allocation dates

[N = 565,679; N plots =23,570]

-0.0024***

(0.0006)

-0.0030**

(0.0009)

-0.0035***

(0.0010)

-0.0050***

(0.0010)

-0.0034***

(0.0007)

All allocation dates (area weighted)

[N = 565,679; N plots =23,570]

0.0000

(0.0021)

-0.0025

(0.0030)

-0.0023

(0.0026)

-0.0016

(0.0024)

-0.0043***

(0.0011)

Exact allocation date

[N = 413,591; N plots =17,233]

-0.0040***

(0.0008)

-0.0042***

(0.0012)

-0.0053***

(0.0012)

-0.0062***

(0.0014)

-0.0021*

(0.0009)

Exact allocation date (area weighted)

[N = 413,591; N plots =17,233]

-0.0073***

(0.0017)

-0.0091***

(0.0023)

-0.0093***

(0.0020)

-0.0103***

(0.0018)

-0.0045***

(0.0010)

Not exact allocation date

[N = 337,678; N plots =14,070]

0.0014

(0.0009)

0.0005

(0.0012)

0.0010

(0.0012)

0.0020.

(0.0011)

-0.0006.

(0.0003)

Panel B. Excluding never-allocated

All allocation dates

[N = 380,087; N plots =15,837]

-0.0031***

(0.0006)

-0.0025*

(0.0013)

-0.0048***

(0.0013)

-0.0132***

(0.0022)

-0.0173***

(0.0030)

All allocation dates (area weighted)

[N = 380,087; N plots =15,837]

-0.0011

(0.0018)

-0.0190*

(0.0089)

0.0016

(0.0029)

-0.0118***

(0.0029)

-0.0183***

(0.0032)

Exact allocation date

[N = 227,999; N plots =9,500]

-0.0026**

(0.0009)

0.0028*

(0.0011)

-0.0068***

(0.0016)

-0.0056*

(0.0022)

-0.0060*

(0.0027)

Exact allocation date (area weighted)

[N = 227,999; N plots =9,500]

-0.0030.

(0.0017)

-0.0075**

(0.0025)

-0.0091***

(0.0025)

-0.0099**

(0.0031)

-0.0121***

(0.0035)

Not exact allocation date

[N = 152,086; N plots =6,337]

-0.0046***

(0.0009)

0.0016

(0.0104)

-0.0165

(0.0140)

-0.0119***

(0.0025)

-0.0163***

(0.0034)

Statistical significance levels are: ‘***’ p-value < 0.001, ‘**’ p-value < 0.01, ‘*’ p-value < 0.05, p-value < ‘.’ 0.1, and ‘ ’ p-value >= 0.1.

Source: own calculations.

Table G2 presents estimates of the main regression results using a range of heterogeneity robust
estimators. Row names indicate sub-samples, number of observations, number of plots (fixed ef-
fects), and (if any) weighting were used for estimating the corresponding ATT. We estimated ATT
for the entire sample of all plots (“All allocation dates”, same as main regression results in Table 2),
and separately by plots with exact allocation date (“Exact allocation date”) and approximate alloca-
tion date (“Not exact allocation date”). We further introduce weights by plot-specific areas (“area
weighted”) to some regression to assume that plot areas are our sampling weights that are used to
represent the population of all pasture land in the study region. Finally, panels A and B distinguish
between samples that include and exclude synthetic never-allocated plots.

Based on Table G2, we can conclude that our main results are robust to sample variability and
weighting. The exact plot allocation date only improves the specificity of our ATT estimates mak-
ing them more pronounced and negative, while, plots with the approximate allocation date only
dilute our main estimation results. Sub-sample of plots with approximate allocation date either
yields zero results (if we include never-allocated plots in Panel A), or shows a similar effect (Panel
B).
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Table G3: Main ATT estimates by parcel

BM static BM SA CS (NYT) CS (NT) IMP static IMP

Panel: A. Full sample

ATT
-0.0025**

(0.0008)

-0.0012

(0.0012)

-0.0028*

(0.0012)

-0.0021*

(0.0010)

-0.0018.

(0.0010)

-0.0049***

(0.0011)

-0.0022***

(0.0006)

N ind. FE 13,922 13,922 13,922 13,922 13,922 12,918 12,918

N obs. 334,128 334,128 334,127 334,127 334,127 310,032 310,032

Within R sq. adj. 22.0 22.0 22.4

Panel: B. Excl. never-allocated

ATT
-0.0043***

(0.0009)

-0.0025

(0.0017)

-0.0070***

(0.0015)

-0.0018

(0.0014)

-0.0148***

(0.0014)

-0.0204***

(0.0016)

N ind. FE 9,162 9,162 9,162 9,162 7,818 7,818

N obs. 219,888 219,888 219,887 219,887 187,634 187,634

Within R sq. adj. 22.8 22.9 23.4

Note: This table uses parcels as our units of observations.

Statistical significance levels are: ‘***’ p-value < 0.001, ‘**’ p-value < 0.01, ‘*’ p-value < 0.05, p-value < ‘.’ 0.1, and ‘ ’ p-value >= 0.1.

Source: own calculations.

One line of criticism often voiced to such analysis is the pseudoreplication of the units of observa-
tions by splitting parcels (which are the subjects of land allocation) by land cover types into plots.
As discussed before the rationale between splitting parcels into plots is simple. Not all land is suit-
able for grazing, therefore, landowners may be willing to enforce control over their land only, where
vegetation is best suited for grazing (land cover is pastures) and where vegetation is less suitable
for grazing (pastures on slopes), lesser control is implemented. Having those parts of parcels as in-
dependent units of analysis (plots) allows for better control for any endogenous plot characteristics
with individual fixed effects thereby estimating true ATT, and minimizing the OVB.

Although one may still debate if using plots as a unit of analysis introduces “bad controls”, com-
pared to using parcels, we would argue the opposite. Having parcels as units of observation av-
erages the picture across land use practices within each parcel leading to “bad controls” for OBV
as compared to the plot-level analysis. Table G3 reports estimates of the ATT for the parcel-level
regression analysis, which have little to no difference from the main estimates of the plot-level
ATT.

Table G4: Estimates sensitivity to inclusion of the plot-level linear trend

SA Area-weighted Exact alloc. Not exact alloc.

Panel: A. Full sample

ATT -0.0139*** 0.0012 -0.0003 -0.0032***

N obs. 565,679 565,679 413,591 337,678

N ind. FE 23,570 23,570 17,233 14,070

Within R sq. adj. 23.0 35.2 22.7 23.0

Panel: B. Excl. never-allocated

ATT -0.0019 0.0496*** -0.0005 -0.0057

N obs. 380,087 380,087 227,999 152,086
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SA Area-weighted Exact alloc. Not exact alloc.

N ind. FE 15,837 15,837 9,500 6,337

Within R sq. adj. 23.7 36.9 24.1 23.4

Note: Each regression includes plot-specifi linear trend introduced as a variable slope of

the linear trend.

Statistical significance levels are: ‘***’ p-value < 0.001, ‘**’ p-value < 0.01, ‘*’

p-value < 0.05, p-value < ‘.’ 0.1, and ‘ ’ p-value >= 0.1.

Source: own calculations.

Figure G1 and Figure G2 shows the event study results for main estimates of the ATT with y-axis
transformed to percent change in vegetation due to land allocation instead of plain coefficients.
Points on the plot show estimates of the ATT at different periods before (-10:-1) and after (0:20)
the land allocation. Whiskers around the points indicate the 95% confidence intervals (CI) of the
point estimates. Once the CI includes zero, point estimates are turning insignificant at the 5%
level, which is indicated on the plot with the dashed lines of the whiskers. Similarly to the previous
results, figures show that right after plot allocation (period 0) pasture qualities deteriorate, although,
a negative significant effect is observed on and after the second year after allocation (period 1).
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Figure G1: Event study of land allocation
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Figure G2: Event-study of land allocation on a sample that excludes never-allocated plots

Table G5: ATT sensitivity to year befor-after aggregation into bins using SA estimator

SA (2 years) SA (3 years) SA (4 years) SA (5 years)
SA (no unalloc.

2 years)

SA (no unalloc.

3 years)

SA (no unalloc.

4 years)

SA (no unalloc.

5 years)

ATT
-0.0030**

(0.0010)

-0.0032**

(0.0010)

-0.0030**

(0.0010)

-0.0030**

(0.0010)

-0.0049***

(0.0013)

-0.0046***

(0.0013)

-0.0043***

(0.0012)

-0.0043***

(0.0011)

N obs. 552,479 552,479 552,479 552,479 366,887 366,887 366,887 366,887

N ind. FE 23,020 23,020 23,020 23,020 15,287 15,287 15,287 15,287

N time FE 24 24 24 24 24 24 24 24

N indep. var. 108 100 96 94 108 100 96 94

R sq. adj. 95.4 95.4 95.4 95.4 95.5 95.5 95.5 95.5

Within R sq. adj. 21.6 21.5 21.5 21.4 22.5 22.3 22.3 22.2

Note: Row ’ATT’ reports the average treatment effect on the treated for all periods of analysis. Heteroscedasticity robust standard errors clustered at plot

level are reported in parentheses.

Statistical significance levels are: ‘***’ p-value < 0.001, ‘**’ p-value < 0.01, ‘*’ p-value < 0.05, p-value < ‘.’ 0.1, and ‘ ’ p-value >= 0.1.

Source: own calculations.
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Figure G3: Event-study sensitivity to years before-after aggregation using SA estimator
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Table G6: Estimates sensitivity to sample by distance to settlement

2km 2-5km 5km 5-10km 10km

Panel A. Including never-allocated

BM static
-0.0056***

(0.0015)

-0.0023.

(0.0012)

-0.0034***

(0.0010)

-0.0019.

(0.0011)

0.0020.

(0.0011)

BM
-0.0043*

(0.0021)

-0.0019

(0.0021)

0.0103.

(0.0055)

-0.0038.

(0.0020)

-0.0018

(0.0026)

SA
-0.0051.

(0.0027)

-0.0041.

(0.0022)

-0.0057***

(0.0017)

-0.0033

(0.0023)

0.0075*

(0.0034)

CS (NYT)
-0.0011

(0.0032)

-0.0006

(0.0026)

-0.0016

(0.0019)

0.0037

(0.0035)

0.0010

(0.0031)

IMP static
-0.0086**

(0.0027)

-0.0059***

(0.0017)

-0.0079***

(0.0015)

-0.0046**

(0.0017)

-0.0107**

(0.0036)

IMP
-0.0116***

(0.0028)

-0.0072***

(0.0020)

-0.0102***

(0.0016)

-0.0057**

(0.0019)

-0.0164***

(0.0049)

N obs. 65,831 105,695 171,527 110,231 98,327

Panel B. Excluding never-allocated

BM static
-0.0001

(0.0016)

-0.0015

(0.0012)

-0.0020*

(0.0010)

-0.0012

(0.0011)

0.0007

(0.0012)

BM
0.0036

(0.0022)

-0.0020

(0.0017)

-0.0017

(0.0014)

-0.0016

(0.0016)

-0.0048*

(0.0020)

SA
0.0022

(0.0023)

-0.0022

(0.0016)

-0.0021

(0.0013)

-0.0015

(0.0016)

-0.0059**

(0.0022)

CS (NYT)
0.0000

(0.0016)

-0.0001

(0.0014)

-0.0010

(0.0011)

0.0001

(0.0014)

0.0034

(0.0083)

IMP static
0.0002

(0.0022)

-0.0028*

(0.0014)

-0.0034**

(0.0012)

-0.0017

(0.0014)

-0.0031

(0.0022)

IMP
-0.0003

(0.0008)

-0.0010

(0.0008)

-0.0012.

(0.0006)

-0.0003

(0.0010)

-0.0034*

(0.0015)

N obs. 110,399 153,551 263,951 155,399 146,327

Source: own calculations.
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H.8 Auxiliary results for regression analysis by tenure and landcover

Table H1: ATT by tenure with no change in the land use

Estimator Common (all) Common (near)
Common

(remote)
Forest Protected Ag. other Households

Panel A. Full sample

BM static 0.0227*** 0.0124** 0.0284** 0.0224*** -0.0064*** -0.0069 0.0231***

BM 0.0103* 0.0081 0.0056 0.0058* -0.0071** -0.0006 0.0154*

SA 0.0147** 0.0139** 0.0069 0.0127*** -0.0091*** -0.0015 0.0150*

IMP static 0.0225*** 0.0127** 0.0274** 0.0257*** -0.0067*** -0.0058 0.0198***

IMP 0.0001*** 0.0001** 0.0001** 0.0005** -0.0003*** -0.0002 0.0001*

N obs. 195,768 98,112 97,656 211,416 207,216 195,816 188,520

N ind. FE 8,157 4,088 4,069 8,809 8,634 8,159 7,855

Panel B. Excl. never-allocated

BM static 0.0147* 0.0084 -0.1216* 0.0009 -0.0135*** -0.0005 0.0050

BM 0.0082 0.0091 -0.0577* -0.0044. 0.0221* -0.0429 0.0384***

SA -0.0258 0.0248* 0.0985* -0.0067 0.0175** 0.0319 -0.0605***

IMP static 0.0135. 0.0081 -0.1314* 0.0103*** -0.0324*** -0.0033 0.0011

IMP 0.0135. 0.0081 -0.1314** 0.0162*** -0.0318*** -0.0017 0.0037

N obs. 10,176 5,688 4,488 25,824 21,624 10,224 2,928

N ind. FE 424 237 187 1,076 901 426 122

Note: This table reports estimates of ’ATT’ derived with key estimators based on subsamples of plots by tenure and subsamples with (Panel

A), and without (Panel B.) never-allocated land. Rows ’N obs.’ and ’N of FE’ report the number of observations and fixed effects for each

sample which is the same for each estimator in the same column. Heteroscedasticity robust standard errors clustered at plot level are used to

estimate significance levels but not reported

Statistical significance levels are: ‘***’ p-value < 0.001, ‘**’ p-value < 0.01, ‘*’ p-value < 0.05, p-value < ‘.’ 0.1, and ‘ ’ p-value >= 0.1.

Source: own calculations.
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Figure H1: Event-study by key tenure categories (IMP estimator)
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Figure H2: Event-study by minor tenure categories (IMP estimator)
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Table H2 also presents an additional land cover type (Hay field) that is not used in estimating main
regression results.

Table H2: ATT estimates by land cover (pasture types) using SA estimator

Estimator Psture Psture on slope Hay field

Panel A. Full sample

BM static -0.0025*** -0.0007 0.0051***

BM -0.0022* -0.0047** 0.0047*

SA -0.0028* -0.0053** 0.0017

IMP static -0.0048*** -0.0042** 0.0014

IMP -0.0029** -0.0042*** -0.0017

N obs. 429,528 136,152 82,776

Panel B. Excl. never-allocated

BM static -0.0038*** 0.0006 0.0028*

BM -0.0037** 0.0098*** 0.0003

SA -0.0059*** 0.0021 -0.0029

IMP static -0.0154*** -0.0062*** -0.0063*

IMP -0.0211*** -0.0093*** -0.0148***

N obs. 286,008 94,080 64,728

Note: This table reports estimates of ’ATT’ made using various estimators on the subsamples of plots by land cover and without

never-allocated land. Heteroscedasticity robust standard errors clustered at plot level are reported in parentheses. Each row reports ATT

estimates by subsample: BM - benchmark two ways fixed effect model; SA (Sun and Abraham, 2021), IMP imputation estimators

(Gardner et. al., 2022).

Statistical significance levels are: ‘***’ p-value < 0.001, ‘**’ p-value < 0.01, ‘*’ p-value < 0.05, p-value < ‘.’ 0.1, and ‘ ’ p-value >= 0.1.

Source: own calculations.
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I.9 Auxiliary results for regression analysis with spillovers

−3.00%

−2.50%

−2.00%

−1.50%

−1.00%

−0.50%

0.00%

0.50%

1.00%

1.50%

2.00%

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Years before/after plot allocation

E
st

im
at

ed
 A

T
T

 o
f l

an
d 

al
lo

ca
tio

n,
 tr

an
sf

or
m

ed
 a

s 
10

0(
eA

T
T

−
1)

%

Reg. with spillover by estimator

BM

SA

IMP

BM (excl. never−allocated)

SA (excl. never−allocated)

IMP (excl. never−allocated)

Conf. intervals

Excl. zero

Incl. zero

Figure I1: Event-study with spillovers
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Table I1: ATT and spillover effects by minor tenure categories

Common
Common

(remote)
Common (near) Fores Protected Ag. other

Panel: Panel A. Full sample

ATT 0.1750** 0.3192*** -0.0271 0.1926*** 0.0849*** -0.0169*

Spillover on allocated -0.0077*** -0.0051** -0.0118*** -0.0084*** -0.0076*** -0.0072***

Spillover on unallocated -0.0075*** -0.0047** -0.0119*** -0.0069*** -0.0071*** -0.0078***

N obs. 194,688 97,680 97,008 197,760 196,560 212,662

N ind. FE 8,112 4,070 4,042 8,240 8,190 8,861

Panel: Panel B. Excl. never-allocated

ATT 0.0853 0.0712 0.1381*** 0.0116 0.0940*** -0.0308**

Spillover on allocated -0.0168. -0.0314. -0.0288* 0.0021 0.0123* -0.0047

Spillover on unallocated -0.0134 -0.0291 -0.0328* 0.0265*** 0.0277*** -0.0103.

N obs. 9,096 4,584 4,512 12,168 10,968 27,070

N ind. FE 379 191 188 507 457 1,128

Note: The table reports results estimated using the SA estimator. Row ’ATT’ reports the average treatment effect on the treated. Rows

’Spill on allocated’ and ’Spill on unallocated’ report the magnitude of corresponding spillover effects. Rows ’N obs.’ and ’N of FE’

report the number of observations and fixed effects for each sub-sample. Heteroscedasticity robust standard errors clustered at plot level

are in parentheses.

Statistical significance levels are: ‘***’ p-value < 0.001, ‘**’ p-value < 0.01, ‘*’ p-value < 0.05, p-value < ‘.’ 0.1, and ‘ ’ p-value >= 0.1.

Source: own calculations.
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