

Measurement Error and Farm Size: Do Nationally Representative (LSMS-ISA) Surveys Provide Reliable Estimates?

Stein T. Holden, Clifton Makate, and Sarah Tione School of Economics and Business, NMBU, Ås, Norway Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi Email: stein.holden@nmbu.no Homepage: <u>www.steinholden.com</u>

Introduction

- We assess the reliability of measured farm sizes (ownership holdings) in the Living Standard Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA) in Ethiopia and Malawi based on
 - -3 survey rounds (2012, 2014, 2016) in Ethiopia
 - -4 survey rounds (2010, 2013, 2016, 2019) in Malawi
 - -We utilize a balanced household sample in both countries
 - -Farm parcels measured by GPS and/or rope/compass
 - -This gives reliable estimates of reported parcels
 - -We detect substantial under-reporting of parcels over time within households that largely have been overlooked in previous studies

Key findings in Ethiopia and Malawi

- Parcel attrition leads to
- Downward bias (23-41%) in estimated average and median farm sizes (ownership holdings) within survey rounds
- The bias is substantial across both countries, across all survey rounds, and across all regions in both countries
- This non-classical measurement error also contributes to upward bias in Gini-coefficients for ownership holding distributions
- We utilized within-household variation in ownership holdings over years to identify and assess the size of the problem
- We tested a variety of models to attemt to correct it

Theoretical framework I

- Theories to explain real farm size (ownership holding) variation
 - a. Inheritance and bequeath
 - b. Purchases or sales
 - c. Administrative expropriations and land redistributions
 - d. Private land takings and losses

Theoretical framework II

Theories to explain errors in farm size measurement

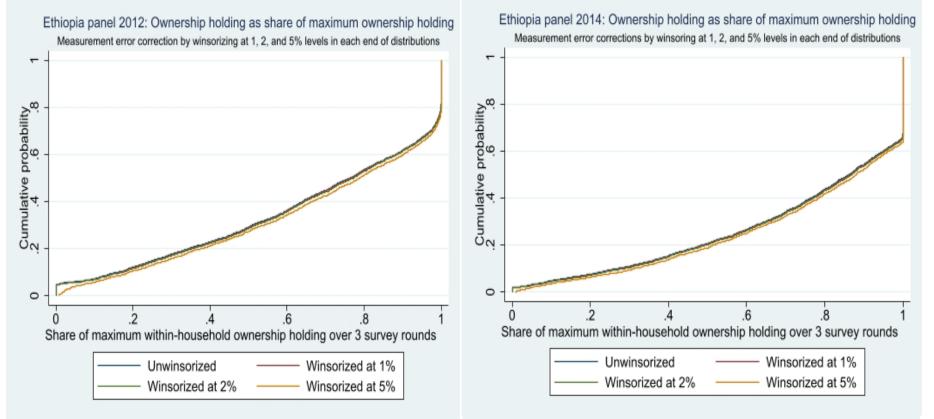
- a. Farmers' incentives to under-report (reduce burden)
- b. Enumerators also have incentives to reduce the work burden
- c. Surveys tend to focus on the main (large) nearby parcels of a farm and leave out small parcels of less significance and parcels that are located far away
- d. Rented-out parcels are more likely to be left out from the survey as such parcels are not managed by the household included in the survey
- e. Improvements in data collection technologies and methods have improved over time (reduced information asymmetries and transaction costs) and may have improved data quality

Approach

- We are unable to test each of the theoretical propositions explicitly because of data limitations
 - –LSMS-ISA data are incomplete wrt parcel transfers and timing of such transfers
 - Moral hazard problems leading to parcel attrition cannot be inferred directly
- In this «second-best world» we test alternative approaches:
 - Alternative estimators to correct for real farm size changes over time
 - -Indicators for parcel attrition and farm size changes
 - Use maximum within-household farm size over years as benchmark

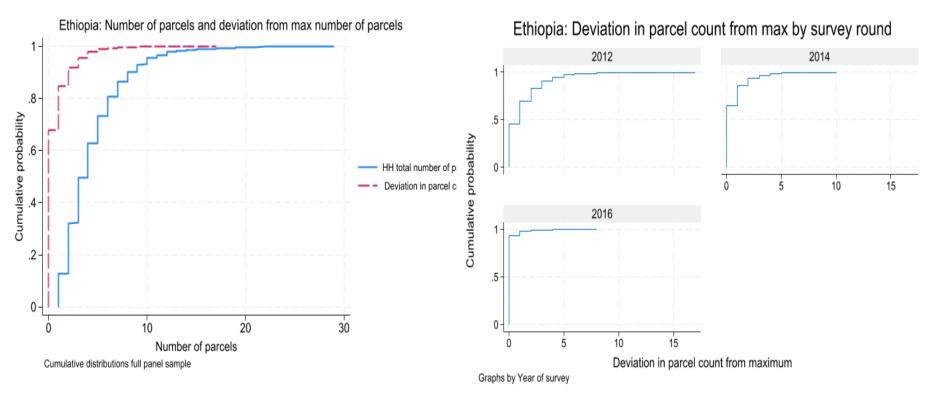
Data: Ethiopian sample

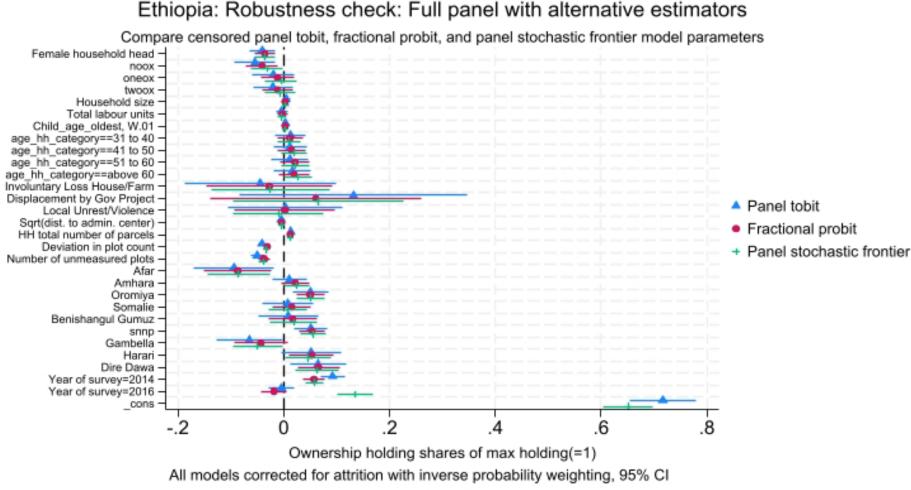
		Year of survey		
Region	2012	2014	2016	Total
Tigray	252	252	252	756
Afar	35	35	35	105
Amhara	498	498	498	1,494
Oromiya	471	471	471	1,413
Somalie	127	127	127	381
Benishangul Gumuz	72	72	72	216
SNNP	665	665	665	1,995
Gambella	50	50	50	150
Harari	73	73	73	219
Dire Dawa	96	96	96	288
Total	2,339	2,339	2,339	7,017



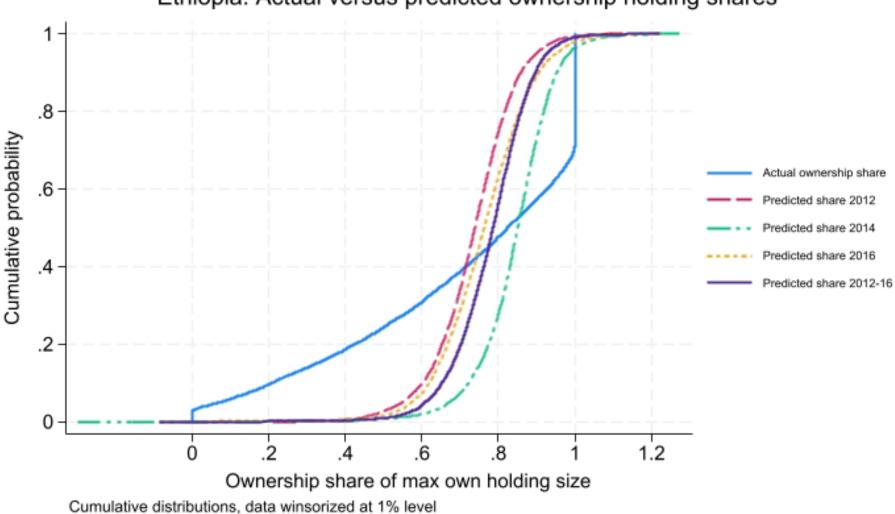
Ownership holdings by year

	Unwinsorized			1% winsorized					
	Ownership			Ownership holdings,			Max ownership holdings 2012-		
	holdings, ha		ha			2016 in ha, winsorized at:			
Year	2012	2014	2016	2012	2014	2016	1%	2%	5%
Mean	1.140	1.338	1.208	1.066	1.162	1.132	1.572	1.510	1.390
Median	0.702	0.791	0.753	0.702	0.791	0.753	1.117	1.117	1.117
P25	0.278	0.331	0.307	0.278	0.331	0.307	0.560	0.560	0.560
P75	1.408	1.523	1.434	1.408	1.523	1.434	2.009	2.009	2.009
P90	2.397	2.550	2.560	2.397	2.550	2.560	3.344	3.344	3.344
sdev	2.023	3.950	2.128	1.193	1.267	1.271	1.525	1.322	1.033
n	2345	2345	2345	2345	2345	2345	2345	2345	2345
Gini	0.539	0.57	0.545	0.507	0.506	0.515	0.473	0.453	0.413


Within-household ownership holding shares of maximum household ownership holdings in 2012 and 2014

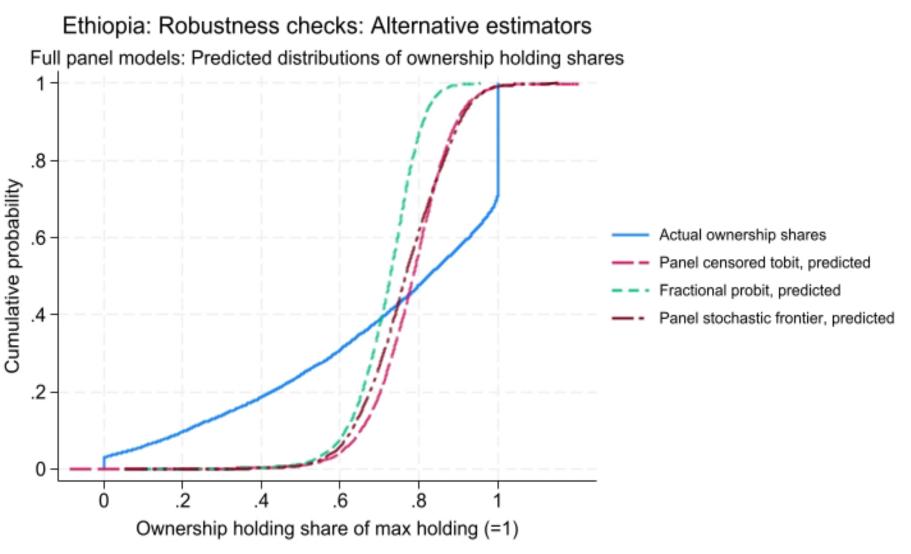


Ethiopia: Parcel count and deviation from max parcel count for households



Ethiopia Panel Censored Tobit models

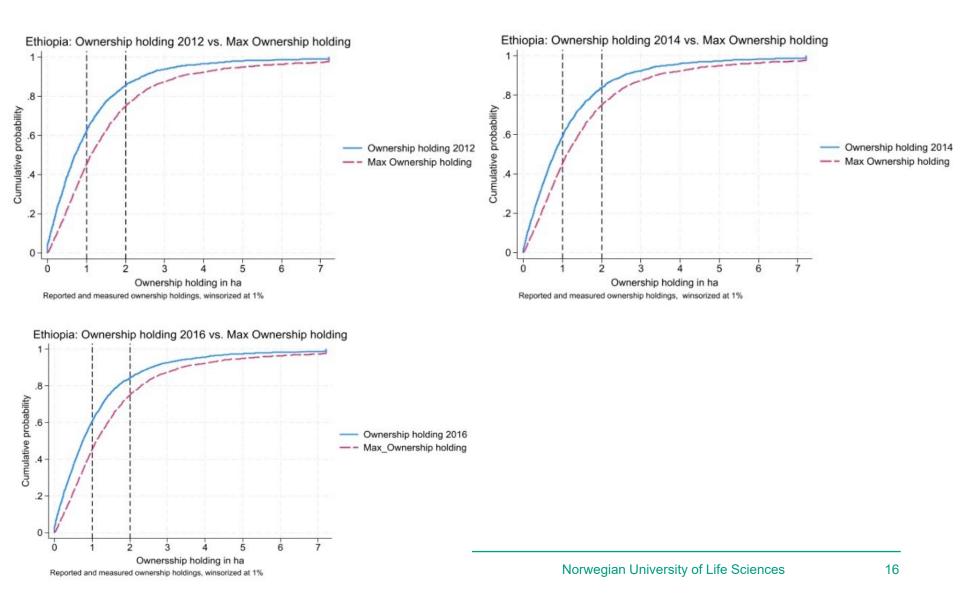
Use 3-round panel 2012-2016. Dependent variable: Ownership holding share of max holding


Ethiopia: Actual versus predicted ownership holding shares

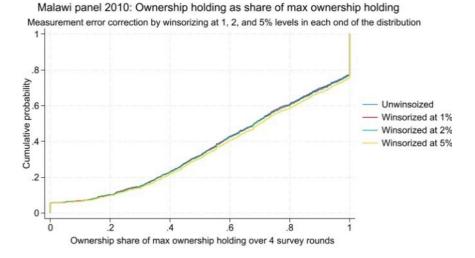
Robustness tests with alternative estimators

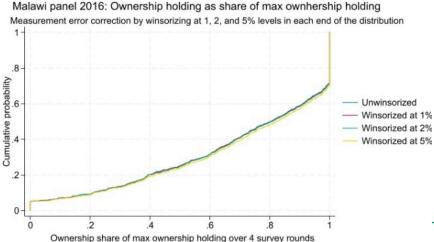


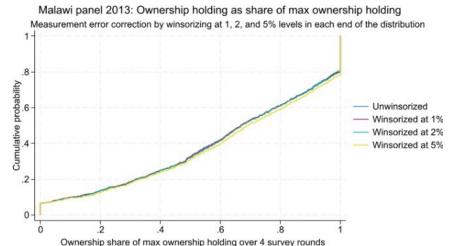
- In addition to Censored Tobit models by year and Panel Censored Tobit models, robustness tests were done with
- Symmetrically censored least squares estimator (SCLS)
- Fractional probit models
- Panel stochastic frontier models
- They gave similar poor predictions of ownership share holdings of maximum within-household holdings
- We concluded that the maximum within-household ownership holding represents the best predictor of farm size



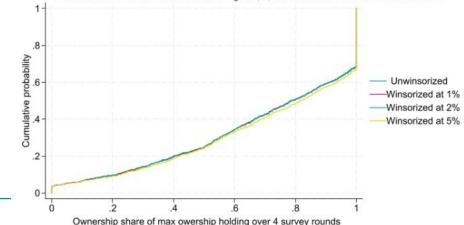
Ethiopia: Farm size distributions by survey round vs. Max within-household holding size

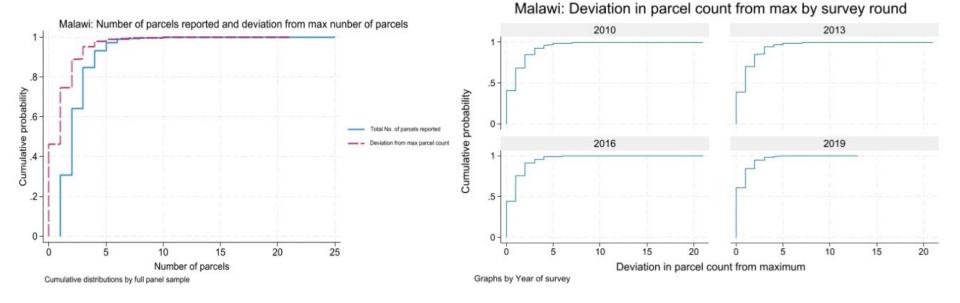




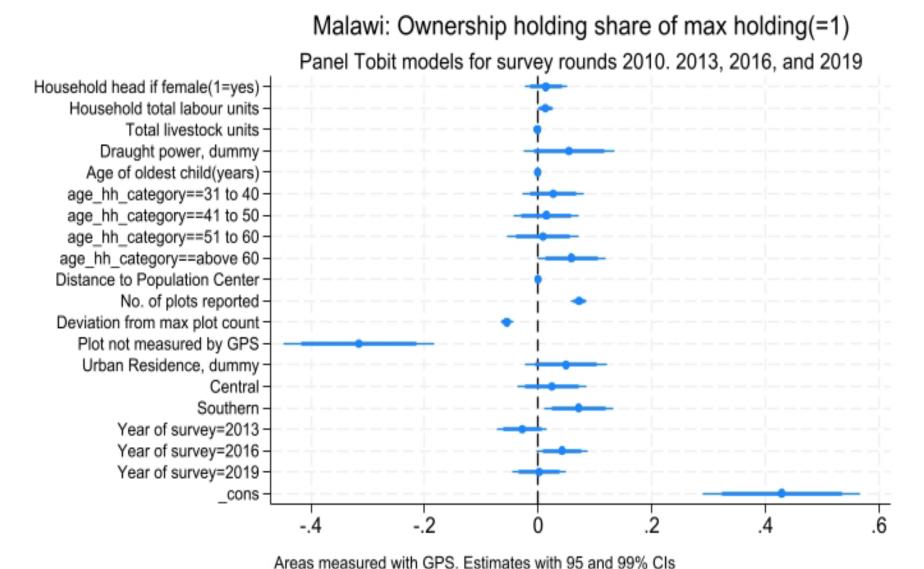

Malawi: Sample size: Number of households

Region	2010	2013	2016	2019	Total
North	86	86	86	86	344
Central	416	416	416	416	1,664
Southern	484	484	484	484	1,936
Total	986	986	986	986	3,944

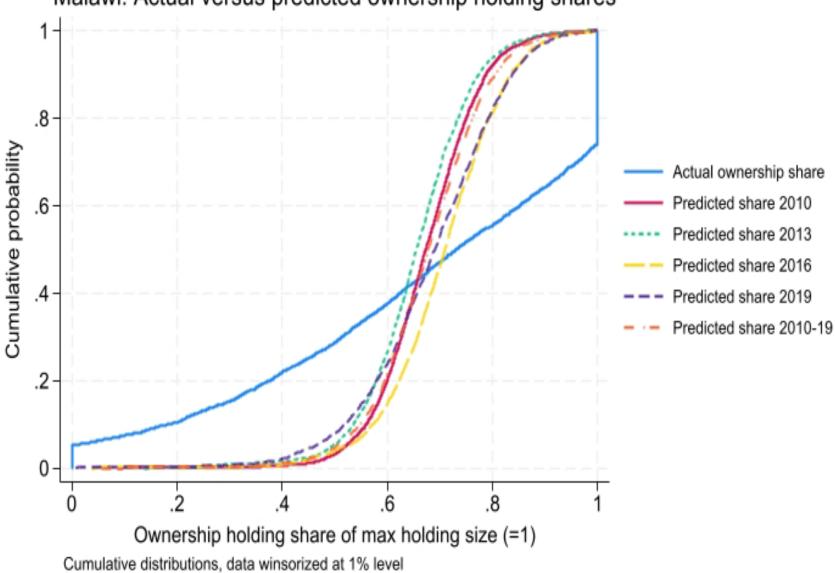

Within-household ownership holding



Malawi panel 2019: Ownership holding as share of max ownership holding Measurement error correction b winsorizing at 1, 2, and 5% levels in ach end of distributions



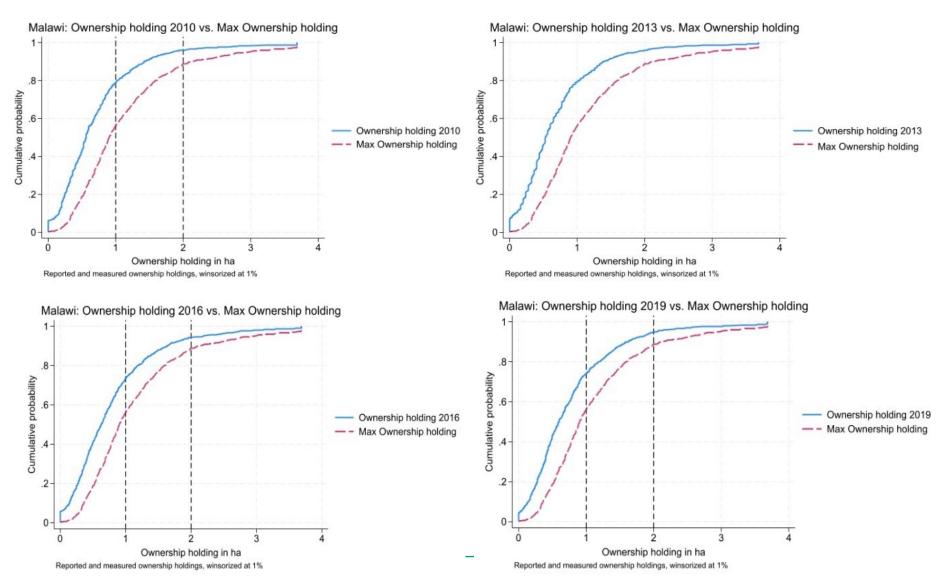
Malawi: Parcel count and deviation from max parcel count for households



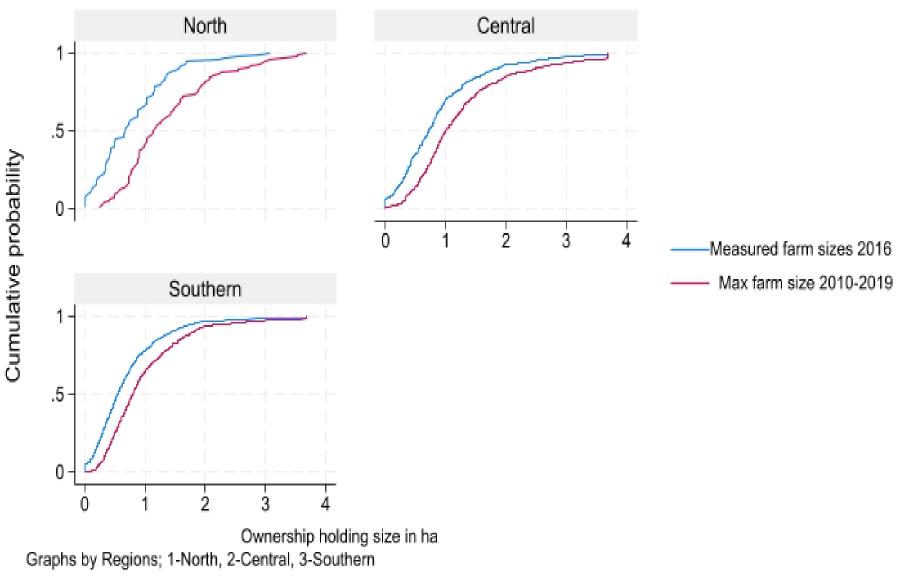
Measurement Error and Farm Size

Base: Male hh head, <31 years old, with rural residence, in Nothern Region, in 2010

Measurement Error and Farm Size



Estimated ownership holding sizes in ha


								Max ownership			
	Ownership	Ownership holding,			holding,						
	unwinsorized				winsorized 1%			winsorized at			
Year	2010	2013	2016	2019	2010	2013	2016	2019	1%	2%	5%
Mean	0.738	0.697	0.803	0.788	0.713	0.690	0.793	0.781	1.133	1.102	1.025
Median	0.567	0.532	0.631	0.599	0.567	0.532	0.631	0.599	0.902	0.902	0.902
P25	0.308	0.291	0.336	0.332	0.308	0.291	0.336	0.332	0.587	0.587	0.587
P75	0.902	0.890	1.036	1.036	0.902	0.890	1.036	1.036	1.449	1.449	1.449
P90	1.425	1.392	1.639	1.619	1.425	1.392	1.639	1.619	2.125	2.125	1.947
St.dev.	0.837	0.652	0.741	0.718	0.626	0.609	0.688	0.680	0.790	0.702	0.543
St.err.	0.027	0.021	0.024	0.023	0.020	0.019	0.022	0.022	0.025	0.022	0.017
Ν	986	986	986	986	986	986	986	986	986	986	986
Gini	0.416	0.407	0.415	0.420	0.396	0.401	0.407	0.415	0.358	0.341	0.298

Ownership holding distributions by survey year vs.

Malawi: Measured farm sizes in 2016 vs. Maximum farm sizes

Measured ownership holdings in 2016, winsorized at 1% versus household Max holding size 2010-2019

Malawi: Gini-coefficients by region

			Max	Max	Мах
	Ownership	Ownership	Ownership	Ownership	Ownership
	holdings	holdings	holding	holding	holding
	Unwinsori	Winsorize	Winsorize	Winsorize	Winsorize
Region	zed	d at 1%	d at 1%	d at 2%	d at 5%
North	0.400	0.399	0.313	0.297	0.242
Central	0.409	0.395	0.351	0.330	0.278
Southern	0.413	0.406	0.358	0.345	0.314
Total	0.416	0.406	0.358	0.341	0.298

Discussion

- Further studies needed:
 - -Utilize parcel GPS coordinates
 - –Match with land registry data in Ethiopia
 - Investigate implications for input use and land productivity estimates based on LSMS data
 - –Bias in household production based poverty indicators? (land wealth, total crop production)
 - -Other countries?

Conclusions

- Parcel attrition is a severe problem in the LSMS data from both Ethiopia and Malawi
- It leads to substantial under-estimation of average and median farm sizes within survey rounds
- This bias cannot easily be corrected with econometric methods due to data limitations (omitted variables problem)
- The maximum within-household farm size in the balanced panel appears as the most reliable measure of farm size (least likely to suffer from parcel attrition)
- We use it to approximate the size of the biases in farm size estimates