Collateral damage: The impact of forced eradication of illicit crops on human capital

Daniela Horta Sáenz (Aix-Marseille School of Economics) Anderson Tami Patiño (Florida International University)

Land Conference. World Bank.

May 14, 2024

Policy solutions for illicit crops are highly debatable

 Illicit economies pose significant obstacles for producing countries UNODC, 2023

- Fuel violence and insecurity
- Exacerbating deforestation
- Escalate corruption and political instability
- Policy solutions aimed at breaking the negative feedback loop remain vastly opaque.
- Eradication of illicit crops is one policy that has been frequently advocated for and used around the world e.g., Peru, Mexico, Afghanistan, Colombia
- Whether these eradication policies help countries overcome the negative feedback loop is highly doubtful
 - They may exacerbate underdevelopment and create conditions conducive to further illicit crop production (e.g., decreasing human capital)

This paper: Forced eradication in Colombia

Does forced eradication affects human capital and socioeconomic outcomes?

- We investigate this question in Colombia
 - The main producer of coca and supplier of cocaine to the US
 - Aerial spraying of glyphosate has been one of the most important policies
 - The program has been extensively discussed in other countries
- Newly digitize exact polygons of aerial and manual eradication from (2004-2015)
- Combine it with the school census (georeferenced) & population census data (2018)
- We use a sharp RD strategy to causally identify its effects on human capital accumulation and socioeconomic impacts in the medium run

Preview: Forced eradication worsens human capital and living conditions

Forced eradication diminishes human capital accumulation and educational performance in the short term

- Plausible mechanism: the substantial income shock experienced by families residing in eradication areas
- "Short-term" educational effects have lasting implications in socioeconomic outcomes
 - Iower schooling rates
 - increased child labor
 - early marriages
 - deteriorated dwelling conditions

Outline

- 1. Institutional Background
- 2. Data
- 3. Research Design
- 4. Short run: Human capital results
- 5. Medium run: Socioeconomic outcomes
- 6. Conclusions

Institutional background: Coca crops and aerial spraying

- Coca has been part of life of indigenous communities in the Andes for centuries
- The main input to produce cocaine
- The only country to implement aerial spraying as a national policy
- Aerial eradication with glyphosate to reduce coca cultivation:
 - ▶ 1994-2015
 - Its day to day implementation depends on weather, presence of illegal armed groups, and coca density.

Data

- Maps from 2004-2015 (UNODC)
 - Aerial eradication (2004-2015)
 - Manual eradication (2006-2015)
- School census (C600 form)
 - Dropout, Fail, Transfers
- 2018 Population Census
 - Migration, Level of education, Labor market, Marriage, etc.
- Location of households at the rural section (MGN, 2018)

Mapa 20. Aspersión aérea y cultivos de coca en Colombia. 2011

Source: UNODC 2012

Research Design: Regression discontinuity at the school level

8

Research Design: Regression discontinuity at the rural section level

Note: This map illustrates the areas sprayed between 2004 to 2015 and the rural sections

We estimate a regression discontinuity model:

$$y_{i,t} = \beta Erad_{i,t} + f(Distance_{i,t}) + X_i + \lambda_t + \epsilon_{i,t}$$
(1)

Erad_{i,t} is a dummy that indicates if a school is inside an eradicated area

- f(Distance_{i,t}) is the RD polynomial
- > X_i covariates (e.g, geographic characteristics, etc) and λ_t year FE

Aerial eradication worsens educational outcomes

Characteristics of polygons

Assumptions

Schools located just within the eradication areas experience a 11% higher dropout and 8.5% failure rate compared to schools just outside.

-	Dep. var:				
	Dropo	ut rate	Failure rate		
	(1)	(2)	(3)	(4)	
Inside sprayed areas	0.00605 ^{**} (0.0030)	0.0107*** (0.0036)	0.00474* (0.0025)	0.00616 ^{**} (0.0026)	
Year FE Baseline controls Bandwidth (Kms) Mean control Observations	yes no 5.93 .092 24640	yes yes 4.61 .094 17216	yes no 9.22 .072 33825	yes yes 8.68 .072 27406	

Note: This table presents the estimated effect of aerial eradication on dropout and failure rate in the following year of eradication (t+1). Base line controls include elevation and a dummy indicating whether the school was inside a sprayed area in the presenting area. All regressions include year fixed effects. Optimal bandwidths are computed using the MSE-minimizing procedure following Cattanee et al 2019. All regressions include a lineal polynomial and a tringular weighting kernel. Standard errors are clustered at the school level $s_{\rm P} < 0.01$, $s_{\rm P} < 0.05$, $s_{\rm P} < 0.01$.

The results are robust to ...

Dropping schools near the border Table

Refining treatment (> 80%) and control group (0%) Table

Including geographic controls Table

Using a quadratic polynomial Table

Different sample restrictions Figure

Plausible mechanisms

Selective Migration: coping strategy to escape the negative consequences Plot

Conflict: land mines to deter military presence in the regions Plot

- Health shock: adverse effects of herbicides, especially glyphosate, on health outcomes (key determinant of education) Plot
- Income effect: substantial shock to the income of the thousands of families (Plot)

Medium run: Aerial eradication worsens overall schooling

Assumptions

	Dep. var: Primary (1)	Schooling rate 25-29 Secondary (2)
Inside sprayed areas	-0.124** (0.0606)	-0.106** (0.0529)
Bandwidth (Kms) Mean control Observations	6.09 .910 1362	8.58 .535 2232

Note: All regressions include elevation. Optimal bandwidths are computed using the MSE-minimizing procedure following Cattaneo et al 2019. All regressions include a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the rural section level. *p < 0.1, **p < 0.05, **p < 0.01.

Other results

- Higher proportion of boys 10-19 years old working
- Higher proportion of girls 10-19 years old in household chores Table
- Lower proportion of girls and women that are single Table
- Again, no effects on health Table
- Again, the mechanism is income: decrease in the proportion of household with access to drinkable water and garbage collection

Conclusions

- Little suggests this strategy will succeed, either in curbing coca supply or reducing violence (Mejia et a. 2017; Reyes 2014; Roso 2013)
- > Yet, aerial eradication affects human capital accumulation
- The mechanism seems to be a negative income shock
- Negative effects seem persistent over time: child labor, early marriage, lower schooling levels
- Rethinking the counterproductive measures to destroy drug supply

Thank you

Appendix

Size of polygons and distances

Table: Size of the polygons

Number of spraying polygons	1293
Average area of the spraying polygon. Squared kms	777.25
Average area of the manual eradication polygon. Squared kms	482.92
Average area of municipality. Squared kms	1014.49

Table: Distances schools and households

	Ins	ide	Outside	
	Mean	sd	Mean	sd
Distance from dwelling to nearest school. Kms Distance between nearest schools. Kms	2.516 1.532	2.668 2.076	1.708 1.272	2.785 1.865

Back

Aerial eradication doesn't decrease coca cultivation

Dep. var: from sc	Area around 1km hool with coca		
(1) (2)			
0.0279	-0.0019		
(0.0292)	(0.0220)		
yes	yes		
yes	yes		
no	yes		
5.07	6.08		
Optimal	Optimal		
.349	.331		
16310	16557		
	Dep. var: from sc (1) 0.0279 (0.0292) yes yes no 5.07 Optimal .349 16310		

Notes: Base line controls include elevation and a dummy indicating whether the school was inside a sprayed area in the preceding year. Extended controls include slope, a dummy indicating whether the school was inside a manual eradication area, and square kms of coca around 1km from the school in the preceding year. All regressions include year fixed effects. All regressions include a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the school level. *p < 0.1, ** p < 0.05, ** *p < 0.01.

Identifying assumptions: no discontinuity in other characteristics

 All relevant factors before eradication happened varied smoothly at the spraying boundaries

		Optimal bandwidt	h			Fixed bandwidth		
	RD Coefficient (1)	SE (2)	BW. (3)	No. (4)	RD Coefficient (5)	SE (6)	BW. (7)	No. (8)
		Panel A: Charact	eristics at	the school	level			
-Geographic: Elevation Slope -Socioeconomic: Nighttime light rd 1Km 1993 Nighttime light rd 3Km 1993 Landmines rd 1Km 1993 Landmines rd 3Km 1993 -Eradication: Km2 coca rd 1Km 1913	62.13527 0.02701 -0.04493 0.01983 0.01714 -0.00041 0.00380 -0.00845 -0.03867	14.2436*** 0.0544 0.1665 0.1312 0.0959 0.0109 0.0146 0.0197 0.0326	5.84 8.82 4.06 3.91 3.46 6.59 4.99 4.88 3.24	24310 32765 18712 18114 16356 26743 21790 21423 12781	62.24343 0.05014 0.11344 0.14381 0.11242 -0.00476 0.02002 0.00909 0.01475	14.1817*** 0.0638 0.1465 0.1132 0.0786 0.0107 0.0150 0.0197 0.0263	5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93	24639 24634 24639 24639 24639 24639 24639 24639 24639 24639
Km2 coca rd 3Km at t-1 Km2 coca rd 3Km at t-1 Aerial eradication at t-1 Manual eradication at t-1 Manual eradication at t	-0.03907 -0.23418 -0.67355 -0.00232 0.01407 0.00901	0.0320 0.2211 0.5226 0.0177 0.0097 0.0081	3.59 3.93 3.28 6.50 6.83	12781 14236 15362 12946 17090 22127	-0.09498 -0.56578 0.02239 0.01269 0.00864	0.1261 0.4555 0.0135* 0.0101 0.0086	5.93 5.93 5.93 5.93 5.93 5.93	20706 20706 20706 15877 19850

Stronger effect for pre-school and primary

An effect driven by children in their initial stages of education, particularly those at the preschool (12 %) and primary school levels (9 %).

	Dep. var:					
		Dropout rate		Failure rate		
	Pre-school	Primary	Secondary	Pre-school	Primary	Secondary
	(1)	(2)	(3)	(4)	(5)	(6)
Inside sprayed areas	0.0113*	0.00848**	0.00246	0.00147	0.00616**	-0.00392
	(0.0059)	(0.0036)	(0.0042)	(0.0025)	(0.0029)	(0.0055)
Year FE	yes	yes	yes	yes	yes	yes
Baseline controls	yes	yes	yes	yes	yes	yes
Bandwidth (Kms)	6.55	5.20	13.5	11.8	8.37	12.2
Mean control	.092	.092	.058	.079	.079	.064
Observations	16104	18009	4224	24348	25623	3923

Nets: This table presents the satismutel effect of satisf andications on dropout and failure rate in the following use of aradication (1+1). Base in more inside a support and an in the protocolly area, All regarstions includes pare ford effects. Obtain bardwidthe are concrotik-locale elusation and the dropout area and the structure a

Affect both girls and boys

We do not observe gender differences in the effect of aerial eradication

		Dep. var:				
	Dropo	ut rate	Failure rate			
	Girls	Boys	Girls	Boys		
	(1)	(2)	(3)	(4)		
Inside sprayed areas	0.0104***	0.0106***	0.00680***	0.00518*		
	(0.0036)	(0.0039)	(0.0026)	(0.0030)		
Year FE	yes	yes	yes	yes		
Baseline controls	yes	yes	yes	yes		
Bandwidth (Kms)	4.93	4.92	9.31	8.32		
Mean control	.087	.100	.064	.064		
Observations	18120	18138	28661	26612		

Note: This table presents the estimated effect of aerial eradication on dropout and failure rate in the following year of eradication (t+1). Ease line controls include elevation and a dummy indicating whether the school was inside a sprayed area in the preceding year. All regressions include year fixed effects. Optimal bandwidths are computed using the MSE-minimizing procedure following Cattaneo et al 2019. All regressions include a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the school level. set < 0.1, set < 0.05, set < 0.0.

Effect of aerial eradication on education-Donut Hole

	Excluding schools near the border					
	100 mts	200 mts	300 mts	400 mts	500 mts	
	(1)	(2)	(3)	(4)	(5)	
		Panel A: Drop	out rate			
Inside sprayed area	0.0110***	0.0114***	0.00607	0.00879**	0.00991**	
	(0.0037)	(0.0039)	(0.0042)	(0.0044)	(0.0046)	
Year FE	yes	yes	yes	yes	yes	
Baseline controls	yes	yes	yes	yes	yes	
Bandwidth (Kms)	4.61	4.61	4.61	4.61	4.61	
Bandwidth choice	Baseline	Baseline	Baseline	Baseline	Baseline	
Mean control	.094	.094	.094	.094	.094	
Observations	16832	16405	15914	15503	15085	
		Panel B: Failu	ire rate			
Inside sprayed area	0.00806***	0.00823***	0.00996***	0.00892***	0.00895***	
	(0.0027)	(0.0027)	(0.0029)	(0.0029)	(0.0030)	
Year FE	yes	yes	yes	yes	yes	
Baseline controls	yes	yes	yes	yes	yes	
Bandwidth (Kms)	8.68	8.68	8.68	8.68	8.68	
Bandwidth choice	Baseline	Baseline	Baseline	Baseline	Baseline	
Mean control	.072	.072	.072	.072	.072	
Observations	27022	26594	26103	25692	25274	

Note: Base line controls include elevation and a dummy indicating whether the school was inside a sprayed area in the preceding year. We use the optimal bandwidth of baseline results. All regressions include a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the school level. *p < 0.1, *p < 0.05, *s p < 0.05

Refining treatment and control definition

		Dep. var:				
	Dropo	ut rate	Failur	e rate		
	(1)	(2)	(3)	(4)		
Inside sprayed area	0.0105* (0.0057)	0.0103* (0.0055)	0.0179*** (0.0045)	0.0122*** (0.0032)		
Year FE Baseline controls Bandwidth (Kms) Bandwidth choice Mean control Observations	yes yes 4.41 Optimal .095 13420	yes yes 4.61 Baseline .095 13870	yes yes 4.86 Optimal .072 14601	yes yes 8.68 Baseline .072 24060		

Note: Only schools with more than 80% of the surrounding area falls within a 1 km buffer and schools that are entirely untreated within the same 1 km buffer are included. Base line controls include elevation and a dummy indicating whether the school was inside a sprayed area in the preceding year. All regressions include year fixed effects. All regressions include year fixed effects. Standard errors are clustered at the school level. p < 0.1, s + p < 0.5, s + p < 0.5.

Back

Geographic controls

	Dep. var:				
	Dropo	ut rate	Failur	e rate	
	(1)	(2)	(3)	(4)	
Inside sprayed area	0.00788** (0.0037)	0.00738** (0.0034)	0.00457* (0.0025)	0.00450* (0.0025)	
Year FE Baseline controls Geographic controls Bandwidth (Kms) Bandwidth choice Mean control Observations	yes yes Mun. 4.61 Baseline .094 17130	yes Dept. 4.61 Baseline .094 17206	yes yes Mun. 8.68 Baseline .072 27326	yes Jept. 8.68 Baseline .072 27394	

Note: Base line controls include elevation and a dummy indicating whether the school was inside a sprayed area in the preceding year. All regressions include year fixed effects. We use the optimal bandwidth of baseline results. All regressions include a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the school level. $*p \in 0.1$, * * p < 0.05, * * * p < 0.01.

Quadratic polynomial

	Dep. var:				
	Dropo	ut rate	Failure rate		
	(1)	(2)	(3)	(4)	
Inside sprayed area	0.0130*** (0.0039)	0.00730** (0.0034)	0.00577* (0.0033)	0.00636** (0.0029)	
Year FE Baseline controls Extended controls Polynomial Bandwidth (Kms) Mean control Observations	yes yes no 2 8.32 .090 26629	yes yes 1 5.60 .093 17699	yes no 2 10.5 .071 31367	yes yes 1 7.30 .073 21776	

Note: Base line controls include elevation and a dummy indicating whether the school was inside a sprayed area in the precoding year. All regressions include year fixed effects. We use the optimal bandwidth of baseline results. All regressions include a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the school level. p < 0.1, * p < 0.0, * p < 0.0,

Sample restriction

a) Dropout rate

b) Failure rate

Back

Two-way fixed effects

		Dep. v	/ar:	
	Dropo	ut rate	Failu	re rate
	(1)	(2)	(3)	(4)
Inside sprayed area	0.00655*** (0.0014)		0.00262* (0.0014)	
% Sprayed area (5km Radius)		0.00255*** (0.0005)		0.00113** (0.0005)
Year FE School FE Mean dep. var Observations	yes yes .083 104912	yes yes .083 104912	yes yes .077 104912	yes yes .077 104912

Note: Base line controls include elevation and a dummy indicating whether the school was inside a sprayed area in the preceding year. All regressions include year fixed effects. We use the optimal bandwidth of baseline results. All regressions include a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the school level. *p < 0.1, **p < 0.05, ***p < 0.01.

Not evidence of migration or violence channel

Transfer rates decrease in the treated schools

Aerial eradication decreases landmine events

Health channel (manual eradication)

- Manual eradication has only a negative income effect for farmers but does not impact health
- Manual eradication had a similar negative effect on dropout and failure rates

Plausible income shock

 Significant reduction in nighttime light density in areas located just inside the eradication area

Night Time Lights (1Km)

Identifying assumptions: no discontinuity in other characteristics

 All relevant factors before eradication happened varied smoothly at the spraying boundaries

	RD Coefficient (1)	SE (2)	BW. (3)	No. (4)
Panel A: Ch	aracteristics of rural	sections		
-Geographic:				
Elevation	-180.518	58.339***	10.60	3909
Slope	0.183	0.332	7.14	2343
-Socioeconomic:				
Nighttime light. 1993	-0.252	0.324	7.41	2465
Landmines.1993	-0.008	0.014	15.40	5674
-Coca cultivation:				
Perc of area with coca. 2003	0.001	0.001	5.24	1348
Perc of area with coca. 2016	0.000	0.002	7.32	2417
Panel B: Characte	eristics with municip	ality-level data		
-Education:				
School-age population. 1993	0.839	3.201	11.10	3806
Population primary. 1993	1195.823	4310.152	10.20	3482
Population secondary. 1993	978.400	4885.616	10.10	3451
Avg. schooling years. 1993	0.067	0.477	9.34	3077
Illiteracy rate. 1993	-0.250	2.377	7.00	2283
No. teachers. 1996	51.729	452.256	10.20	3637
No. students. 1996	1036	9277	10.10	3603
-Agriculture:				
Suitability index oil palm. 1961-1990.	153.893	671.618	14.40	5308
Suitability index plantain. 1961-1990.	-111.144	490.783	9.18	3287
Suitability index coffee. 1961-1990.	-208.547	378.679	9.67	3501

Aerial eradication increases early labor market entry for boys and household chores for girls

		Dep. var: Share of chil Had a job			ren 10 to 19 years old Household chores		
	All	Boy	Girl	All	Boy	Girl	
	(1)	(2)	(3)	(4)	(5)	(6)	
Inside sprayed areas	0.0564***	0.0779***	0.00608	0.0143	-0.0398*	0.0556**	
	(0.0198)	(0.0287)	(0.0094)	(0.0258)	(0.0220)	(0.0279)	
Bandwidth (Kms)	10.7	10.6	13.5	8.17	6.89	12.5	
Mean control	.129	.204	.042	.120	.042	.208	
Observations	3304	3087	3882	2380	1769	3594	

Note: All regressions include elevation. Optimal bandwidths are computed using the MSE-minimizing procedure following Cattaneo et al. 2019. All regressions include a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the rural section level. *p < 0.1, * p < 0.05, * *p < 0.01.

Back

Aerial eradication increases early marriage for younger women

	Dep. var: Share of single women			
	10 - 14	15 - 19	20 - 24	25 - 29
	(1)	(2)	(3)	(4)
Inside sprayed areas	-0.0597* (0.0316)	-0.0294 (0.0414)	-0.0561 ⁺ (0.0381)	-0.117** (0.0498)
Bandwidth (Kms) Mean control Observations	6.89 .947 1582	10.3 .702 2570	11.4 .355 2740	8.04 .205 1730

Note: All regressions include elevation. Optimal bandwidths are computed using the MSE-minimizing procedure following Cattaneo et al. 2019. All regressions include a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the rural section level. +p < 0.15 * p < 0.1, ** p < 0.05, *** p < 0.01

No effects on health

	Dep. var: All	Share of pe 5 - 9	ople with h 10 - 14	ealth issues 15 - 19
	(1)	(2)	(3)	(4)
Pa	nel A: Have	fallen sick l	ately	
Inside sprayed areas	0.00638 (0.0125)	-0.0320 (0.0236)	0.0199 (0.0240)	-0.00711 (0.0143)
Bandwidth (Kms)	6.48	6.73	6.56	9.13
Mean control	.045	.057	.048	.053
Observations	1862	1683	1629	2535
	Panel B: W	ith disabiliti	es	
Inside sprayed areas	0.0101 (0.0073)	0.00969 (0.0074)	0.00378 (0.0108)	0.00969 (0.0154)
Bandwidth (Kms) Mean control Observations	8.31 .039 2661	11.7 .028 3353	12.1 .032 3526	8.06 .031 2154

Note: All regressions include elevation. Optimal bandwidths are computed using the MSE-minimizing procedure following Cattaneo et al. 2019. All regressions include a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the rural section level. *p < 0.1, **p < 0.05, ***p < 0.01.

Negative effects on income

	Dep. var: Share of households with utilities				
	Electricity	Water	Sewage	Collection	
	(1)	(2)	(3)	(4)	
Inside sprayed areas	-0.0440	-0.119**	-0.0607*	-0.105**	
	(0.0378)	(0.0513)	(0.0358)	(0.0528)	
Bandwidth (Kms)	10.0	6.73	7.85	6.86	
Mean control	.469	.150	.056	.095	
Observations	3669	2157	2649	2213	

Note: All regressions include elevation. Optimal bandwidths are computed using the MSE-minimizing procedure following Cattaneo et al. 2019. All regressions include a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the rural section level. *p < 0.1, **p < 0.05, ***p < 0.01.